Curso

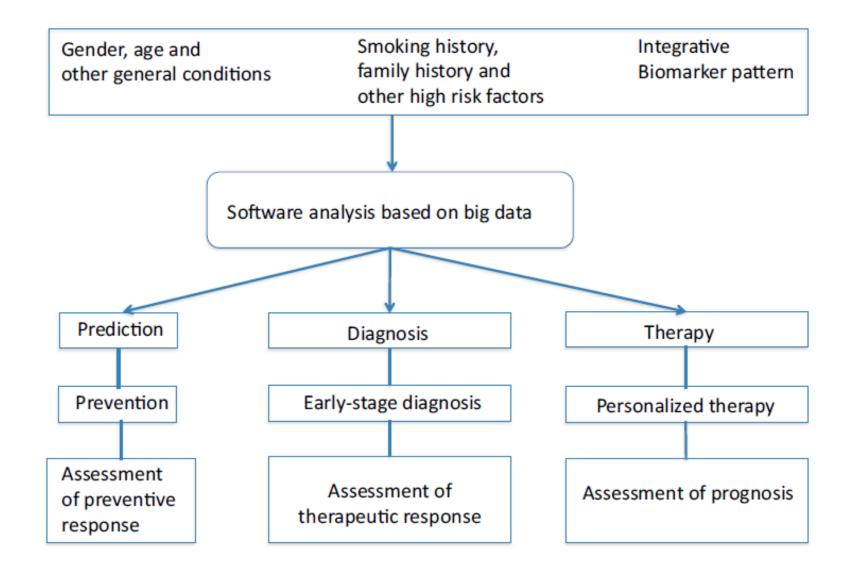
Medicina Personalizada de Precisión

De la teoría a la práctica

De la Biología Molecular a la Medicina: Fundamentos de la Medicina Personalizada de Precisión

Miguel Urioste Unidad Clínica de Cáncer Familiar CNIO Cathy, a 40-year-old mother of three, arrives in your office for her annual physical.

She has purchased a commercial genomewide scan (see the Glossary), which she believes measures the clinically meaningful risk that common diseases will develop, and has completed her family history online using My Family Health Portrait (www.familyhistory.hhs.gov), a tool developed for this purpose by the U.S. Surgeon General.


Her genomewide scan suggests a slightly elevated risk of breast cancer, but you correctly recognize that this information is of unproven value in routine clinical care. On importing Cathy's family-history file, your office's electronic health record system alerts you to the fact that Cathy is of Ashkenazi Jewish heritage and has several relatives with breast cancer, putting her at heightened risk for the hereditary breast and ovarian cancer syndrome. The system prompts you to discuss Cathy's risk of breast and ovarian cancer during the visit. Considering both her family history and ancestry, you refer Cathy to a health care professional with advanced genetics training for consultation.

In the coming months Cathy elects to have her DNA tested for mutations in *BRCA1* and *BRCA2*, the genes associated with hereditary breast and ovarian cancer syndrome, and to undergo a mammographic examination. Although the results of her genetic tests are negative, her mammogram reveals a suspicious abnormality. A biopsy is performed, and breast cancer is detected. Surgery is successful. Pathological examination of tissue from the excised tumor reveals that it is positive for estrogen-receptor protein and negative for human epidermal growth factor receptor type 2 (HER2); the lymph glands are free of cancer cells. Genetic-expression profiling of the tumor indicates a relatively high risk of recurrent cancer, and Cathy elects to receive adjuvant chemotherapy followed by treatment with tamoxifen. Five years later, the cancer has not recurred.

Precision Medicine is an emerging approach for disease treatment and prevention that takes into account individual variability in genes, environment, and lifestyle for each person.

(The National Institutes of Health, USA)

Only focus on one aspect is not enough

UCM, 25/09/2017

Precision Medicine, no overall consensus

Table 3 Interview respondents' views on motivation for patient segmentation

Benefits	Experts
Avoiding side effects/optimize side effect profile	Academics (3), clinical experts (2), economic experts (3), EFPIA representative (1), patient representatives (2)
Avoiding waste of resources/over-treating/selecting only patients who need it	Academic (1), clinical experts (2), economic experts (3), EFPIA representative (1), patient representatives (2), payer (1)
Improved outcomes in terms of effectiveness/efficacy	Academic (1), clinical expert (1), economic experts (3), patient representative (1), payer (1)
Better outcome/benefit/response rate (not specified)	Academic (1), clinical experts (2), economic experts (2), provider (1)
Improved cost-effectiveness/value for money	Clinical expert (1), economic experts (3), payer (1)
Reduce costs	Economic experts (3), payer (1)
Improved length of life	Academic (1), clinical expert (1), economic expert (1)
Improved quality of life	Academic (1), economic expert (1)
Free-up time from clinicians	Patient representative (1), payer (1)

EFPIA, the European Federation of Pharmaceutical Industries and Associations

Precision Medicine is not a new concept

Hippocrates' aphorism:

"It is more important to know the patient who has a disease, than the disease the patient has"

"Well told and eye opening I kept thinking, "Exactly!" while reading it." -Atul Gawande, author of Being Mortal THE DIGITAL DOCTOR ela la Hope, Hype, and Harm at the Dawn of Medicine's Computer Age ROBERT WACHTER Precision Medicine is not a consensus strategy

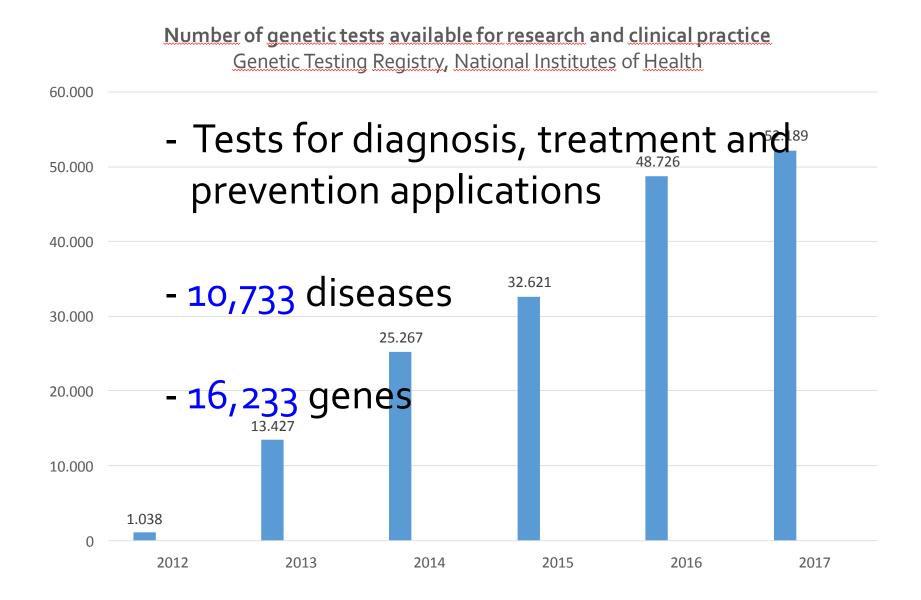
Seven Questions for Personalized Medicine

Michael J. Joyner, MD Nigel Paneth, MD, JAMA September 8, 2015

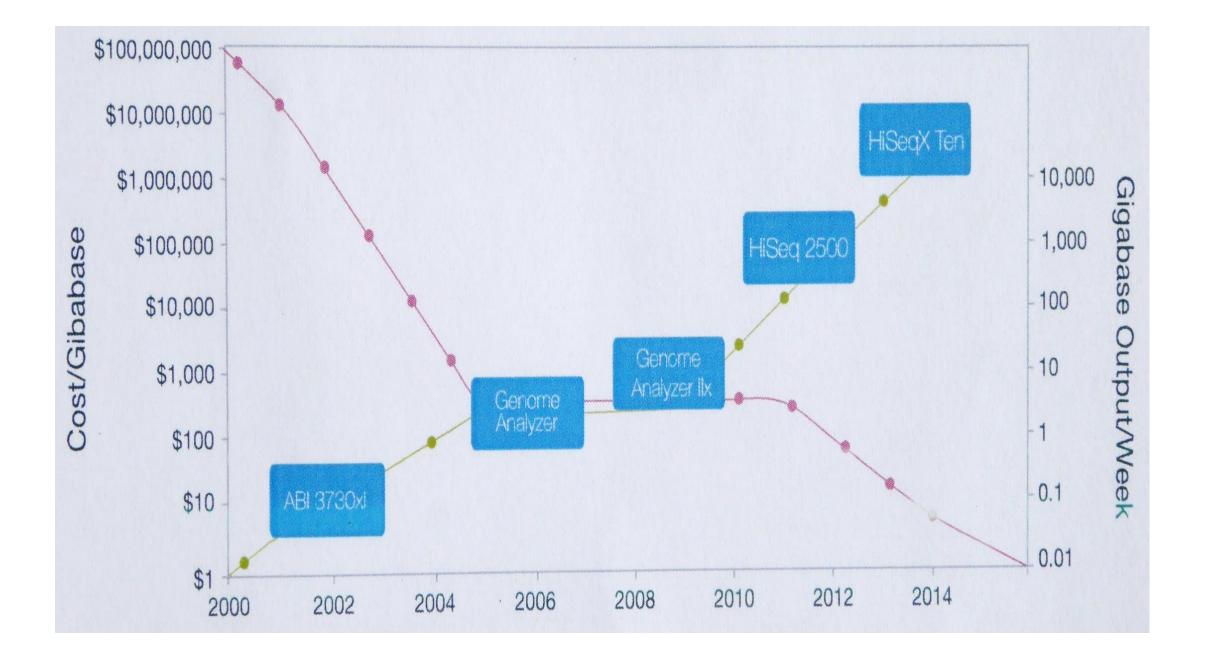
The precision-oncology illusion

Precision oncology has not been shown to work, and perhaps it never will, says **Vinay Prasad**. 8 SEPTEMBER 2016 | VOL 537 | NATURE

VIEWPOINT


Will Precision Medicine Improve Population Health?

Muin J. Khoury, MD, Sandro Galea, MD,


JAMA October 4, 2016

UCM, 25/09/2017

"An Evidence Framework for Genetic Testing", The National Academies of Sciences, Engineering, and Medicine, Mar 2017

This is historical material "frozen in time". The website is no longer updated and links to external websites and some internal pages may not work.

BRIEFING ROOM ISSUES THE ADMINISTRATION 1600 PENN

the WHITE HOUSE PRESIDENT BARACK OBAMA

🗶 U.S. Department of Health & Human Services 🔵 National Institutes of Health

National Institutes of Health All of Us Research Program

ABOUT ~ FUNDING ~ NEWS, EVENTS, & MEDIA

 \sim

SUBSCRIBE

Search

The future of health begins with **All** of **Us**

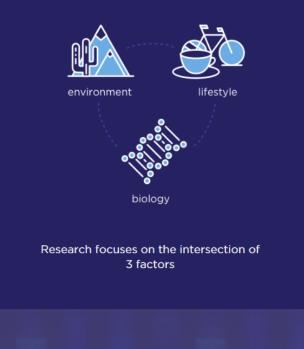
The *All of Us* Research Program is a historic effort to gather data from one million or more people living in the United States to accelerate research and improve health. By taking into account individual differences in lifestyle, environment, and biology, researchers will uncover paths toward delivering precision medicine.

🗶 U.S. Department of Health & Human Services 📎 National Institutes of Health National Institutes of Health

All of Us Research Program

ABOUT ~ FUNDING ~ NEWS, EVENTS, & MEDIA

 \sim


SUBSCRIBE

Search

We are building a research program of 1,000,000+ people

The mission of the All of Us Research Program is to accelerate health research and medical breakthroughs, enabling individualized prevention, treatment, and care for all of us.

ABOUT THE SCALE & SCOPE

NIH NATIONAL CANCER INSTITUTE

 Español

 ABOUT CANCER
 CANCER TYPES
 RESEARCH
 GRANTS & TRAINING
 NEWS & EVENTS
 ABOUT NCI
 search
 Q

Home > Research > Key Initiatives

+

+

CANCER MOONSHOT[™]

Blue Ribbon Panel

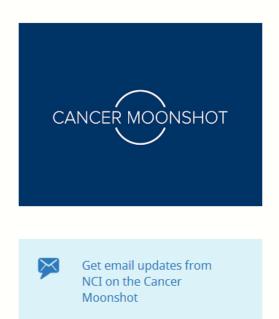
Funding Opportunities

Implementation

Cancer Moonshot[™]

The Cancer Moonshot to accelerate cancer research aims to make more therapies available to more patients, while also improving our ability to prevent cancer and detect it at an early stage.

To ensure that the Cancer Moonshot's goals and approaches are grounded in the best science, a Cancer Moonshot Task Force consulted with external experts, including the presidentially appointed National Cancer Advisory Board (NCAB).


A Blue Ribbon Panel of experts was established as a working group of the NCAB to assist the board in providing this advice. The panel's charge was to provide expert advice on the vision, proposed scientific goals, and implementation of the Cancer Moonshot.

Congress passed the 21st Century Cures Act in December 2016 authorizing \$1.8 billion in funding for the Cancer

Moonshot over 7 years. An initial \$300 million has been appropriated in fiscal year (FY) 2017 to fund Moonshot initiatives.

🗚 🖶 🖾 f 🌶 🖇 🖗

https://www.cancer.gov/research/key-initiatives/moonshot-cancer-initiative

Sharing Personal Genomes

The Personal Genome Project was founded in 2005 and is dedicated to creating public genome, health, and trait data. Sharing data is critical to scientific progress, but has been hampered by traditional research practices—our approach is to invite willing participants to publicly share their personal data for the greater good.

Learn more >

Participation

Donating your genome and health data to science is a great way to enable advances in understanding human genetics, biology, and health. We seek volunteers willing to donate diverse personal information to become a public resource.

Open Data

Open data is a critical component of the scientific method, but genomes are both identifiable and predictive. As a result, many studies choose to withhold data from participants and restrict access to researchers. The PGP's public data is a common ground to collaborate and improve our understanding of genomes.

Global Network

We are a member of the Global Network of Personal Genome Projects. Since the Personal Genome Project was launched at Harvard Medical School in 2005, the network has grown to include researchers at many leading institutions around the globe.

Learn about participating >

Use PGP data >

Find out about the network »

PGP Global Network	Website information	Stay connected
United States • Canada • United Kingdom • Austria	Contact Us • About PersonalGenomes.org	🎔 Twitter • 🛗 Youtube • 🎤 Blog
Learn about our network	Terms of Service • Privacy Policy	f Facebook • in LinkedIn • 🚰 GET Conference

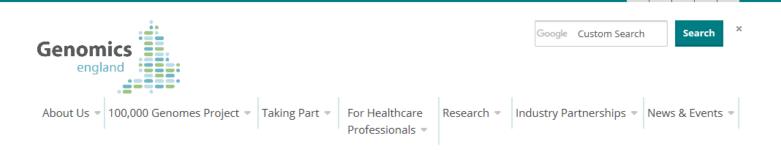
Q

ICPerMed | Activities | Services | Internal

ICPerMed Workshop 2017

The first ICPerMed workshop took place on 26-27 June 2017 in Milan, Italy. In five parallel sessio experts and funders from different fields of personalised medicine discussed and developed solutions for the following topics:

>> read more


ICPerMed@EU-LAC Health Final Conference

On June 15th, Dr. Ulrike Bußhoff, coordinator of ICPerMed Secretariat, represented ICPerMed at the EU-LAC Health Final Conference in Madrid, Spain.

📌 About ICPerMed

The International Consortium for Personalised Medicine (ICPerMed) brings together over 30 European and international partners representing ministries, funding agencies and the European Commission (EC). Together, they work on coordinating and fostering research to develop and evaluate personalised medicine approaches.

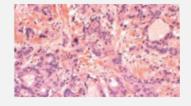
Despite all efforts, only a limited number of personalised medicine approaches have so far managed the long road from basic biomedical research to clinical application. A lot of investment is made in personalised medicine related research. However, the research efforts in this highly innovative and rapidly changing field are fragmented. Therefore research funders assembled under the umbrella of ICPerMed address this fragmentation challenge on the

Home > The 100,000 Genomes Project

The 100,000 Genomes Project

The project will sequence 100,000 genomes from around 70,000 people. Participants are NHS patients with a rare disease, plus their families, and patients with cancer.

The aim is to create a new genomic medicine service for the NHS – transforming the way people are cared for. Patients may be offered a diagnosis where there wasn't one before. In time, there is the potential of new and more effective treatments.


The project will also enable new medical research. Combining genomic sequence data with medical records is a ground-breaking resource. Researchers will study how best to use genomics in healthcare and how best to interpret the data to help patients. The causes, diagnosis and treatment of disease will also be investigated. We also aim to kick-start a UK genomics industry. This is currently the largest national sequencing project of its kind in the world.

Useful links

Home

Cancer Introduction to cancer in the 100,000 Genomes Project.

f in У 17 🖸

Clinical implementation of PM Impact

- Cancer care

Diagnostic evaluation Treatment selection Prognosis

- Monogenic and syndromic conditions

- Therapies

- Reproductive health

Cell-free DNA aneuploidy screening Preimplantation genetic diagnosis

Clinical implementation of PM Ethics

Table 1 Ethical issues associated with the use of companion diagnostics [46]

lssue	Concern
Informed consent	The process of getting consent from the patient for testing is both lengthy and complex
Data management	 Testing generates data which should be identifiable and integrated into datasets of genomic and health information Interpreting test data requires skilled professionals who are able to interpret and translate the data to patients
Communication of results	 Translating the results to patients is becoming increasingly difficult, as the number of biomarkers being tested by a single test is constantly increasing Testing can provide incidental findings and variants of unknown significance, knowledge of which can affect a patient's well-being Patients have concerns about privacy and the possible disclosure of genetic information. They have concerns about who sees their results during the analysis process and a potential risk of discrimination if such information is known
Cost and equity issues	 The costs for targeted therapies are usually high; drugs and accompanying tests might not always be covered by health insurance, which can limit patients' access to treatment High costs increase the imbalance in access to new and better treatments as the identification of new biomarkers and treatments continues
Guidelines	 There is a lack of guidelines regarding implementation of testing

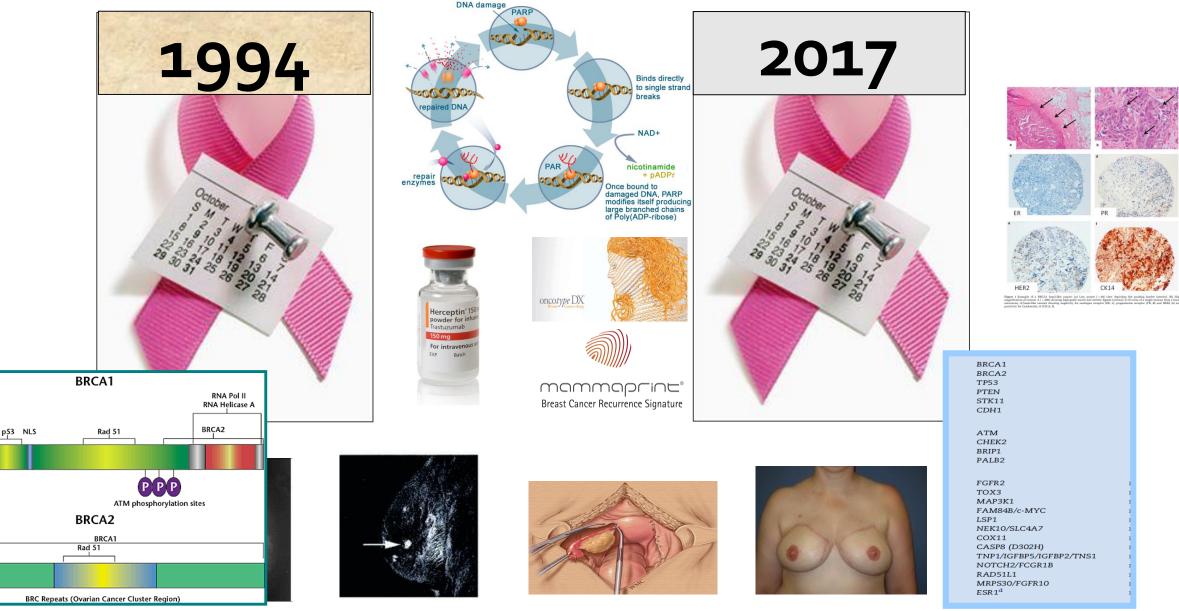
Clinical implementation of PM Education

No easy task Complex technologies In continual evolution No guidelines for clinical application (given their newness)

Knowledge asymmetry (geneticist and nongeneticist clinicians) Well-intentioned misapplication of tests

8 September 2016 / Vol 537 / Issue No 7619

The underlying concept of precision medicine, in which health care is individually tailored on the basis of a person's genes, lifestyle and environment, is not new: transfusion patients have been matched with donors according to blood type for more than a century (see page S52). But advances in genetics, and the growing availability of health data, present an opportunity to make precise personalized patient care a clinical reality.

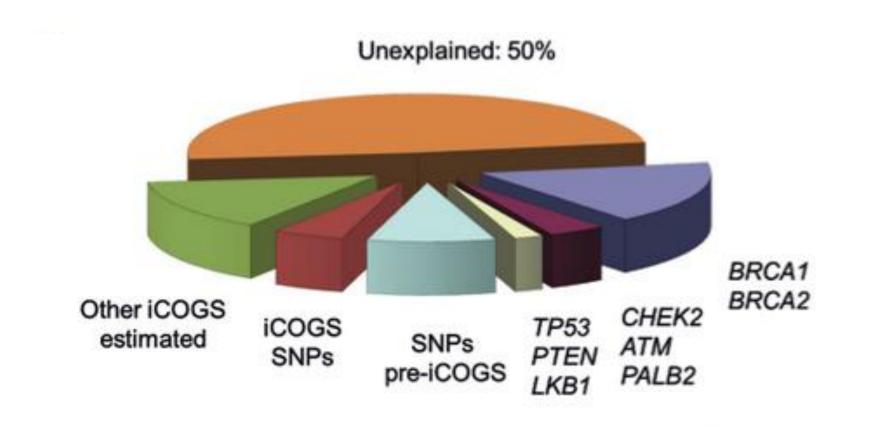

Clinical implementation of PM Education

JAMA Insights | GENOMICS AND PRECISION HEALTH

Finding the Rare Pathogenic Variants in a Human Genome

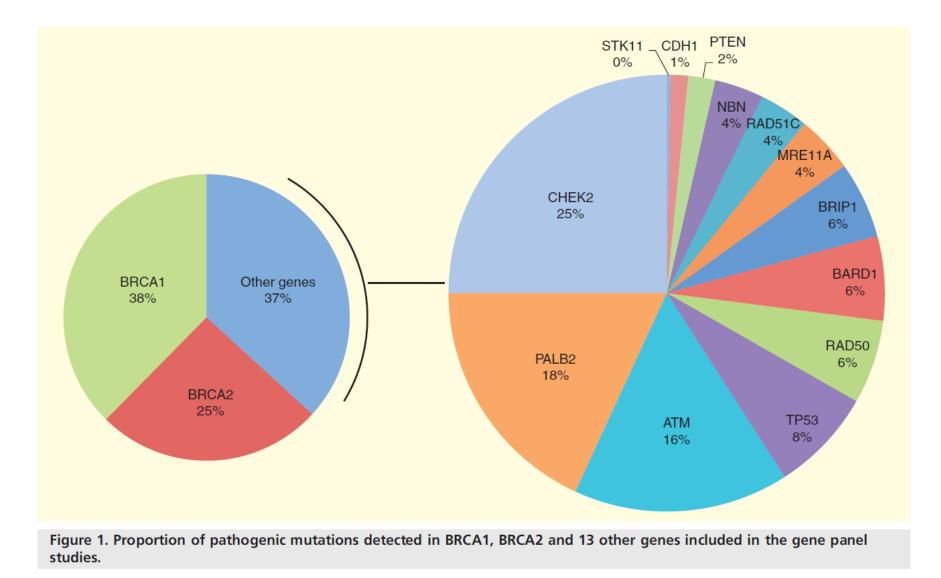
James P. Evans, MD, PhD; Bradford C. Powell, MD, PhD; Jonathan S. Berg, MD, PhD

PM should move from treating diseases to managing patients


a

RING

finger


Slide provided by Dr. Gemma Llort

Inherited susceptibility to Breast Cancer

Common low-penetrance alleles.	MAF>10%	OR<1.5
Rare moderately penetrant disease-causing variants	MAF<2%	OR≥2.0
Rare high-penetrance mutations	MAF≤0.1%	OR≥5.0

The role of genetic testing panels in breast cancer

Breast cancer genomic tests

Who's eligible for the Oncotype DX test?

Recently diagnosed stage I or II invasive BC or DCIS Cancer is ER-positive Lymph-node-negative BC Making decisions about chemotherapy

How does Oncotype DX work?

Looking at these 21 genes, 12 in DCIS, in paraffin-embedded tumoral tissue, can provide specific information on:

Likelihood that the breast cancer will return Benefits from chemotherapy in early-stage invasive BC Benefits from radiation therapy in DCIS

Breast Cancer Recurrence Signature

Who's eligible for the MammaPrint test?

Invasive stage I or stage II BC ER-positive or ER-negative In three or fewer lymph nodes Smaller than 5 centimeters

How does MammaPrint work?

The MammaPrint test looks at the activity of 70 genes, in fresh tumoral tissue, and then calculates a recurrence score that is either low risk or high risk

The increasing understanding of molecular basis

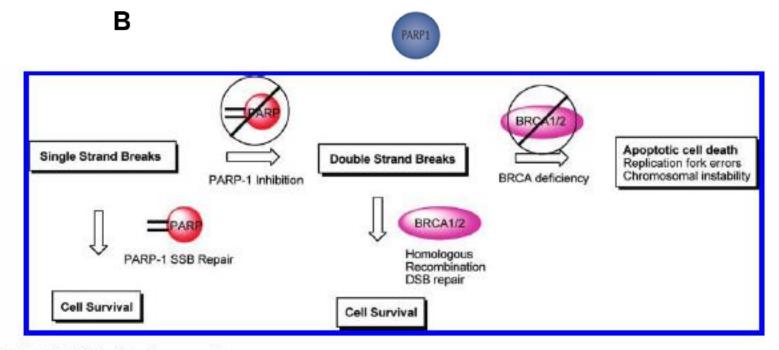


Figure 4. Synthetic lethality of cancer cells.

Figure I (**A**) DNA repair pathways; (**B**) PARP senses DNA SSBs and utilizes NAD⁺ as a substrate to form PAR, which attach to a range of target proteins including PARP-I itself and BER proteins. This posttranslational modification is termed PARylation.

Management and recommendations. Salpingo-ooforectomy

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Impact of Oophorectomy on Cancer Incidence and Mortality in Women With a *BRCA1* or *BRCA2* Mutation

Amy P.M. Finch, Jan Lubinski, Pål Møller, Christian F. Singer, Beth Karlan, Leigha Senter, Barry Rosen, Lovise Maehle, Parviz Ghadirian, Cezary Cybulski, Tomasz Huzarski, Andrea Eisen, William D. Foulkes, Charmaine Kim-Sing, Peter Ainsworth, Nadine Tung, Henry T. Lynch, Susan Neuhausen, Kelly A. Metcalfe, Islay Thompson, Joan Murphy, Ping Sun, and Steven A. Narod

5,783 women BRCA1/2 carriers observed prospectively for an average 5.6 years

Impact of oophorectomy. Cancer incidence

Variable	No Oophorectomy (n = 2,270)		Oophorectomy at Baseline (n = 2,123)		Oophorectomy in Follow-Up (n = 1,390)		Ali (N = 5,783)	
	No.	%	No.	%	No.	%	No.	%
Age at study entry, years								
Mean	42	.4	50	.5	45	.0	46	.0
Range	304	86	30-	88	304	82	30-	88
Follow-up, years								
Mean	4.5	59	5.8	3	6.8	80	5.5	68
Range	0.001	-16.8	0.04	-16	0.07	-16	0.001	-16.8
Age at oophorectomy, years								
Mean	N	Α	46	8	47	.5	47	.1
Range			20-	78	26-	83	20-83	
Mutation								
BRCA1	1,824	80.4	1,592	75.0	1,057	76.0	4,473	77.4
BRCA2	446	19.6	531	25.0	333	24.0	1,310	22.6
Breast cancer at baseline								
No	1,334	61.8	905	44.9	697	52.8	2,936	53.4
Yes	825	38.2	1,113	55.2	623	47.2	2,561	46.6
Parity								
Nulliparous	514	23.0	239	11.3	183	13.3	936	16.4
Parous	1,718	77.0	1,875	88.7	1,192	86.7	4,785	83.6
Mean	1.	7	2.	1	2.	0	1.	9
Range	0-1	0	0-	9	0-	6	0-1	0
Oral contraceptive use								
Ever	1,277	57.3	1,425	68.8	882	65.1	3,585	63.4
Never	950	42.7	647	31.2	474	34.9	2,071	36.6
Hormone replacement therapy								
Ever	159	7.4	676	33.3	140	10.6	975	17.7
Never	1,996	92.6	1,354	66.7	1,179	89.3	4,529	82.3
Tamoxifen								
Ever	279	12.3	467	22.0	215	15.5	961	16.6
Never	1,991	87.7	1,655	78.0	1,175	84.5	4,821	83.4
Incident cancer								
No	2,162	95.2	2,100	98.9	1,335	96.0	5,597	96.8
Yes	108	4.8	23	1.1	55	4.0	186	3.2
Clinically detected	108		0		0		108	
Occult	0		0		46		46	
Peritoneal	0		23		9		32	

Abbreviation: NA, not applicable.

Impact of oophorectomy. All-cause mortality

			BRCA1		BRCA2			All Patients		
Variable	No. of Patients	HR	95% CI	Р	HR	95% CI	Р	HR	95% CI	Р
Age group at study entry, years										
≤ 40	2,104	0.27	0.15 to 0.48	< .001	0.44	0.17 to 1.09	.08	0.30	0.19 to 0.49	< .00
41-50	1,906	0.23	0.16 to 0.33	< .001	0.29	0.14 to 0.59	< .001	0.24	0.17 to 0.33	< .00
51-60	1,189	0.28	0.19 to 0.43	< .001	0.19	0.08 to 0.43	< .001	0.27	0.18 to 0.38	< .00
≥ 61	584	0.43	0.25 to 0.71	.001	0.89	0.33 to 2.43	.84	0.49	0.31 to 0.76	.00
Total	5,783	0.30	0.24 to 0.38	< .001	0.33	0.22 to 0.50	< .001	0.31	0.26 to 0.38	< .00
Previous breast cancer										
Yes	2,561	0.31	0.24 to 0.39	< .001	0.34	0.22 to 0.52	< .001	0.32	0.26 to 0.39	< .00
No	2,633	0.21	0.12 to 0.37	< .001	0.67	0.08 to 5.35	.70	0.23	0.13 to 0.39	< .00

Clinical management and recommendations

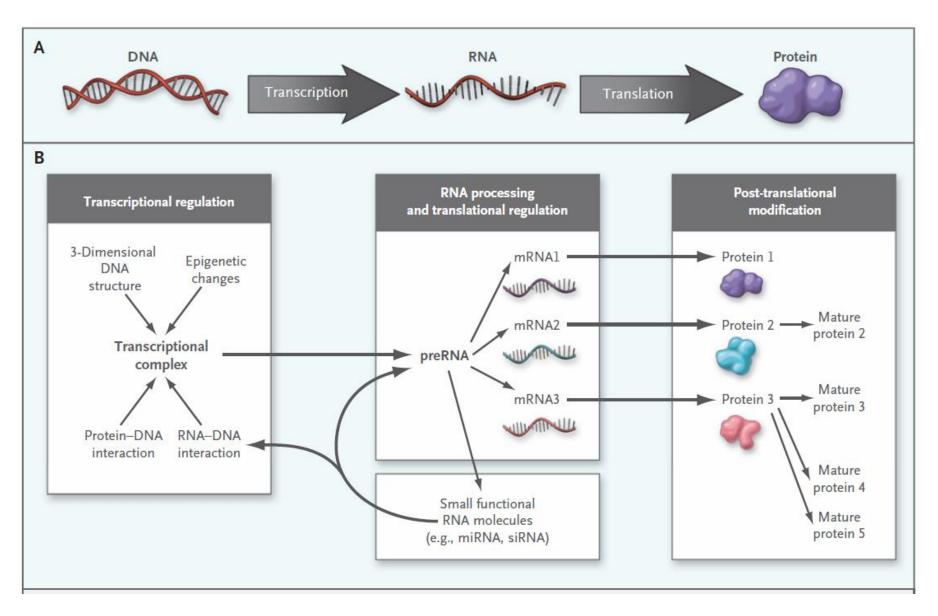
Contralateral mastectomy and survival after breast cancer in carriers of BRCA1 and BRCA2 mutations: retrospective analysis

OPEN ACCESS

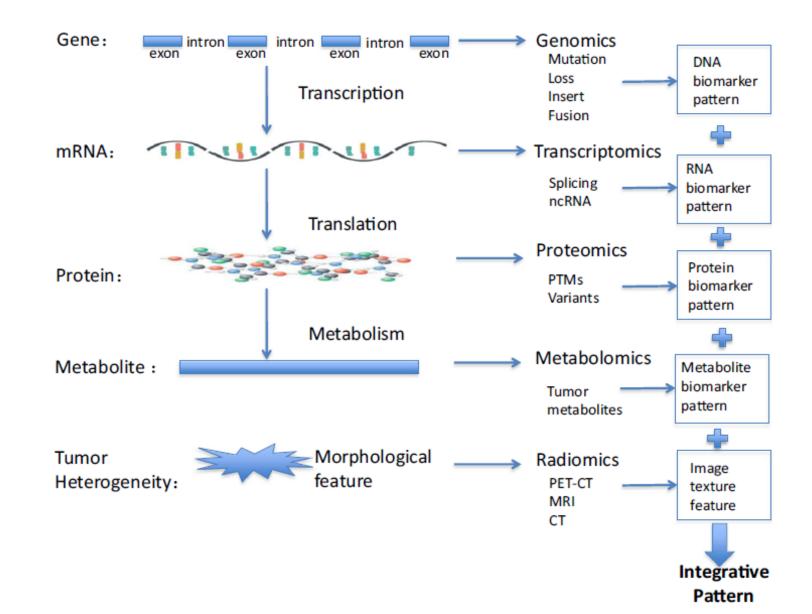
Kelly Metcalfe *professor*¹ *adjunct scientist*², Shelley Gershman *registered nurse*¹², Parviz Ghadirian *professor*³, Henry T Lynch *professor*⁴, Carrie Snyder *registered nurse*⁴, Nadine Tung *associate professor*⁵, Charmaine Kim-Sing *professor*⁶, Andrea Eisen *medical oncologist*⁷, William D Foulkes *professor*⁸, Barry Rosen *associate professor*⁹, Ping Sun *statistician*², Steven A Narod *professor*²

1) 390 *BRCA1/2* mutation carriers with BC and unilateral or bilateral (181) mastectomy, were followed for up to 20y from diagnosis

2) 79 women died of BC in the follow up period: 18 in the bilateral mastectomy group and 61 in the unilateral mastectomy.


3) At 20 y the survival rate for women who had mastectomy of the contralateral breast was 88% and for those did not was 66%

4) Multivariable analysis, controlling for age of diagnosis, year of diagnosis, treatment, and other prognostic features, contralateral mastectomy was associated with 48% reduction in death from BC


Screening recommendations in BRCA carriers (SEOM)

	Age	Evidence and recommendation
Women		
Breast self awareness	Starting at age 18 years	IIA
Clinical breast exam every 6–12 months	Starting at age 25 years	IIA
Annual breast MRI	25–70 years	IIA
Annual mammogram	30-35 to 75 years	IIA
Transvaginal ultrasound and Ca 12.5 every 6–12 months	30 years	IIC
Men		
Breast self awareness	Starting at age 35 years	IIIC
Annual clinical breast exam	Starting at age 35 years	IIIC
Basal mammogram	40 years (individualised)	IIIC
Annual Prostate Cancer screening	Starting at age 40 years	IIIB
Men and women		
Pancreatic and melanoma	Consider individualised screening based on cancers in the family	IIIC
Colorectal cancer screening, especially in BRCA1	Starting at 40 years or younger if family history	IIB

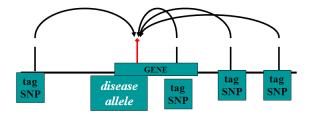
Defining the gene and its regulation

The development of techniques offers promise to find more biomarker pattern

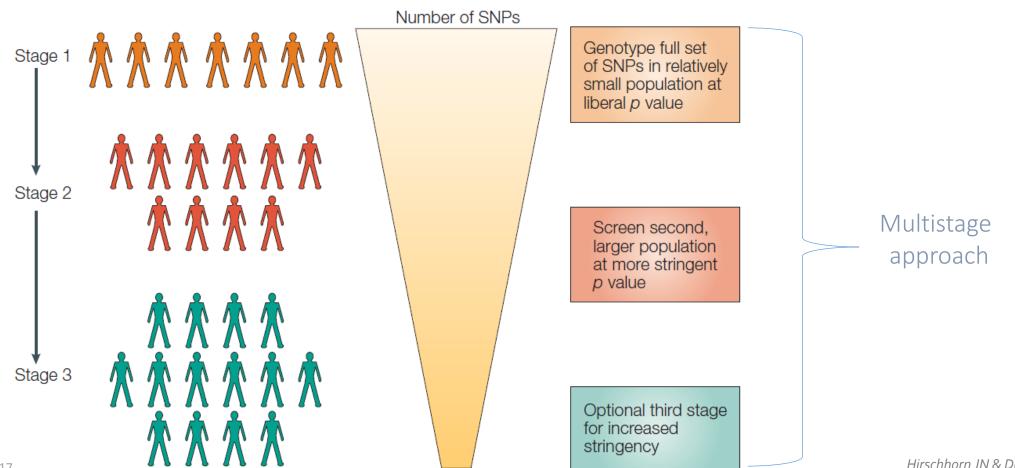
Genomic variation. There is no "normal" human genome sequence.

<u>Glossary</u>

- Humans are very similar at the DNA sequence level; about 99.6% of base pairs are Allele: One of two or more versions of a genetic sequence at a particular location in the genome. Identical from person to person.


Mutation: A change in a DNA sequence. Germ-line mutations occur in the eggs and sperm and can be passed on to offspring, whereas somatic mutations occur in body cells and are not passed on. - Given the size of the genome (approximately 6 billion bp in every nucleated non-

gegennuliketide Hylythenkis (SNB)staintial udterfoin individualegenetic variation, fsinietion in the human genome (frequency greater tan 1%). The difference between any two people is about 24 million bp.

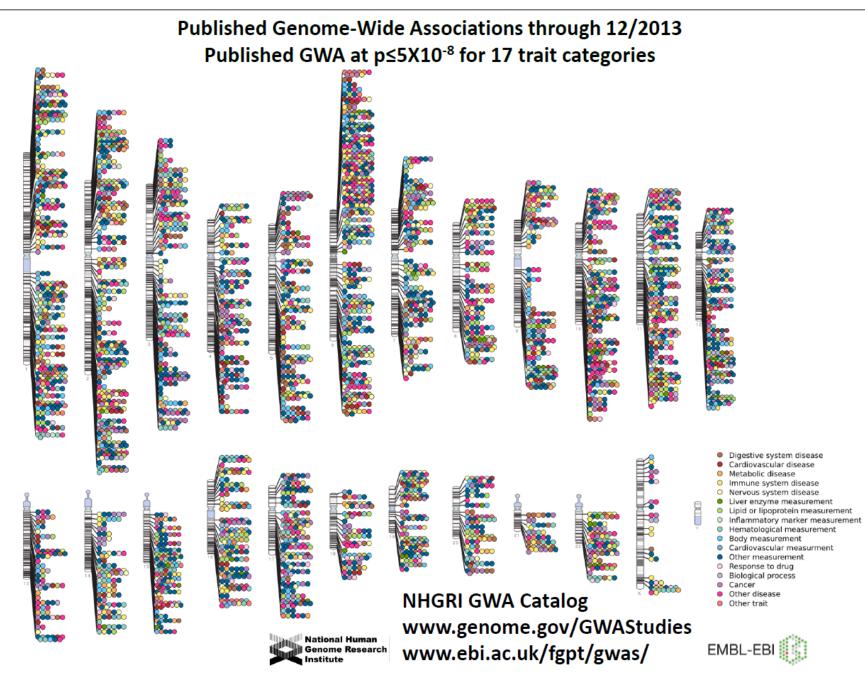

HapMap: The nickname of the International HapMap (short for "haplotype map") Project, an international venture that seeks to map variations in human DNA sequences to facilitate the discovery of genetic variants associated with health. The HapMap describes common patterns of genetic variation among people.

GWAS

Genome-wide approach

No SNPs selection Chromosomal regions, no genes Many positive cases by chance Replication in independent cohort

GWAS

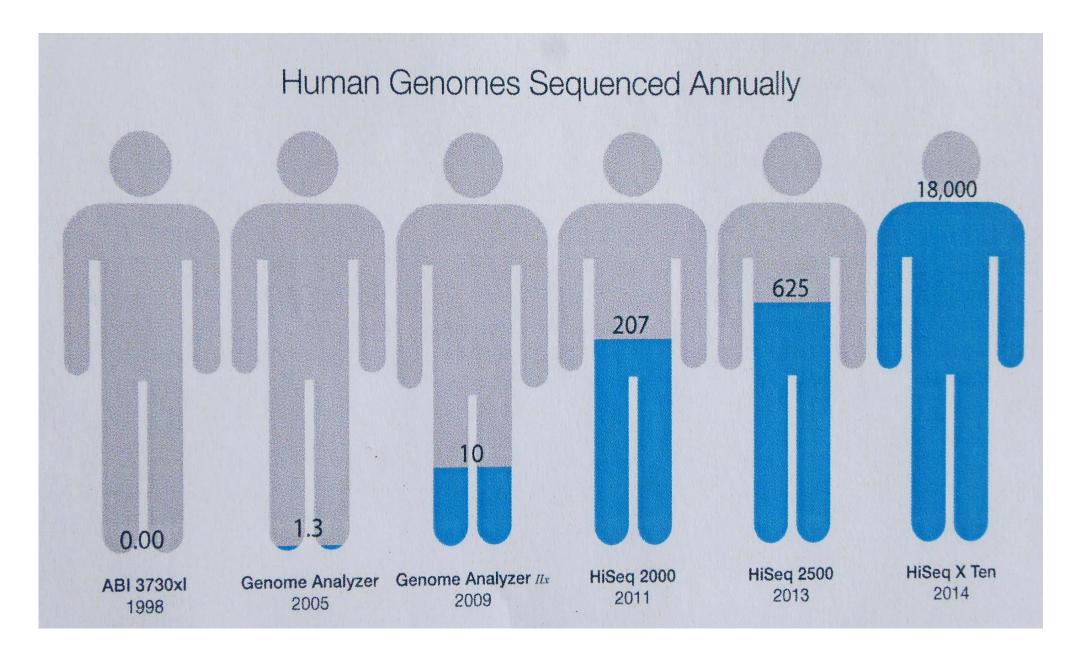

Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2

Marker (chromosome, position)	Alleles ^a	Stage (cases/controls)	MAF ^b	Per-allele OR (95% Cl) ^c	Heterozygote OR (95% CI) ^d	Homozygote OR (95% CI) ^e	P trend
rs4973768 (3p24, 27391017)	C/T	Stage 1 (388/355) Stage 2 (3,951/3,870) Stage 3 (3,872/3,925) Stage 4 (30,256/34,063) Combined	0.46 0.47 0.48 0.46 (0.21)	1.33 (1.07-1.64) 1.06 (0.99-1.03) 1.13 (1.06-1.20) 1.11 (1.08-1.13)	1.45 (1.01–2.07) 0.99 (0.89–1.10) 1.03 (0.93–1.15) 1.12 (1.08–1.17)	1.76 (1.15–2.68) 1.13 (0.99–1.28) 1.27 (1.12–1.44) 1.23 (1.17–1.29)	$\begin{array}{c} 0.0087\\ 0.081\\ 0.00025\\ 1.4\times10^{-18}\\ 4.1\times10^{-23} \end{array}$
rs6504950 (17q23, 50411470)	G/A	Stage 1 (390/357) Stage 2 (3,976/3,894) Stage 3 (3,870/3,923) Stage 4 (30,470/33,302) Combined	0.31 0.29 0.28 0.27 (0.08)	0.76 (0.61–0.96) 0.90 (0.84–0.96) 0.91 (0.85–0.98) 0.95 (0.92–0.97)	0.83 (0.61–1.13) 0.86 (0.78–0.94) 0.89 (0.81–0.97) 0.96 (0.92–0.99)	0.52 (0.31–0.89) 0.86 (0.73–1.02) 0.88 (0.73–1.04) 0.89 (0.83–0.95)	$\begin{array}{c} 0.018 \\ 0.0020 \\ 0.012 \\ 0.00010 \\ 1.4 \times 10^{-8} \end{array}$

GWAS in breast cancer

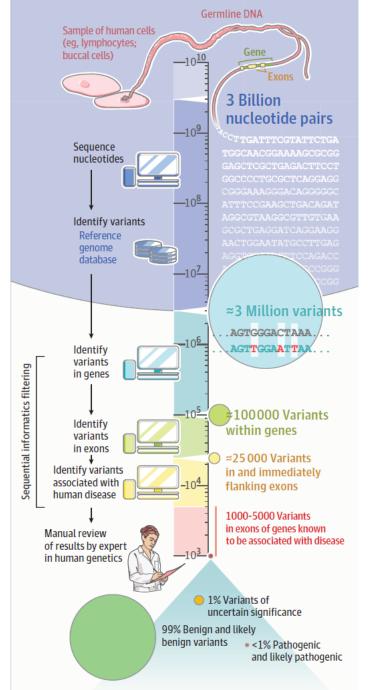
	Select Author	*										
ublication:	Select Publication	on	*									
)isease/Trait:	Breast cancer					*						
	Sean	ch C	ear Query									
First Author/Date/ Journal/Study	Disease/Trait	Initial Sample Size	Replication Sample Size	Region	Gene	Strongest SNP-Risk Allele	Risk Allele Frequency in Controls	p- value	OR per copy or B-coefficient for heterozygote and [95% CI]	Platform [SNPs passing QC		
Sold March 11, 2008 Proc Natl Acad Sci USA Genome-wide association study provides evidence for a preast cancer isk locus at isk locus at	Breast cancer	249 cases, 299 controls (Ashkenazi Jewish, non- BRCA1/2 carriers)	1,193 cases, 1,166 controls (Ashkenazi Jewish, non- BRCA1/2 carriers)	6q22.33	ECHDC1,RNF146	rs2180341- G	0.21	3 x 10 ⁻⁸	1.41 [1.25-1.59]	Affymetrix [150,080]		
Murabito	Breast cancer	1,345	NR	17q21.33	COLIAI	rs2075555-?	NR	8 x	NR	Affymetrix		
September 19, 2007		individuals (Framingham)	individuals (Framingham)		5q34	Intergenic	rs6556756-?		10-8		[70,897]	
3MC Med Genet					12q21.1	Intergenic	rs1154865-?		5 x 10 ⁻⁷			
association study of breast and prostate					18q21.2	Intergenic	rs1978503-?	7 x				
cancer in the				13q32.1	ABCC4	rs1926657-?		10-7				
<u>IHLBI's</u> Tamingham							9.7 x 10 ⁻⁷					
Heart Study					1.			2 x 10 ⁻⁶				
aston	Breast cancer	390 cases,	26,646	10q26.13	FGFR2		0.38	2 x	1.26 [1.23-1.30]	Perlegen		
4ay 27, 2007 <i>lature</i>		364 controls cases, 24,889 controls	24,889		24,889	16q12.1	TNCR9,LOC6,43714	G	0.25	10-76	1.20 [1.16-1.24]	[205,586]
Senome-wide Association				controls	5q11.2	МАРЗК1	rs3803662- C	0.28	1 × 10 ⁻³⁶	1.13 [1.10-1.16]		
tudy identifies lovel breast				8q24.21	Intergenic	rs889312-A	0.40	7 x 10 ⁻²⁰	1.08 [1.05-1.11]	-		
cancer susceptibility				11p15.5	LSP1	rs13281615- 0.30	0.30		1.07 [1.04-1.11]			
oci						T		5 × 10 ⁻¹²				
					,	rs3817198- T		3 x				
								10-9				
Hunter May 27, 2007 Vat Genet A genome-wide association study identifies alleles in FGFR2 associated with isk of sporadic postmenopausal preast cancer	Breast cancer	1,145 cases, 1,142 controls	1,176 cases, 2,072 controls	10q26.13	FGFR2	rs1219648- G	0.40	1 × 10 ⁻¹⁰	1.20 [1.07-1.42]	Illumina [526,173]		
Stacey May 27, 2007	Breast cancer	1,599 cases, 11,546	2,934 cases,	2q35	Intergenic	rs13387042- A	0.50	1 × 10 ⁻¹³	1.20 [1.14-1.26]	Illumina [311,524]		
Nay 27, 2007 kat Genet Common variants on https://www.somes 2035 and 16012 confer usceptibility to usceptibility to sotrogen eceptor- positive breast cancer		11,546 controls	cases, 5,967 controls	16q12.1	TNRC9	A rs3803662- T	0.27	6 x 10 ⁻¹³	1.28 [1.21-1.35]	[311,524]		

UCM, 25/09/2017

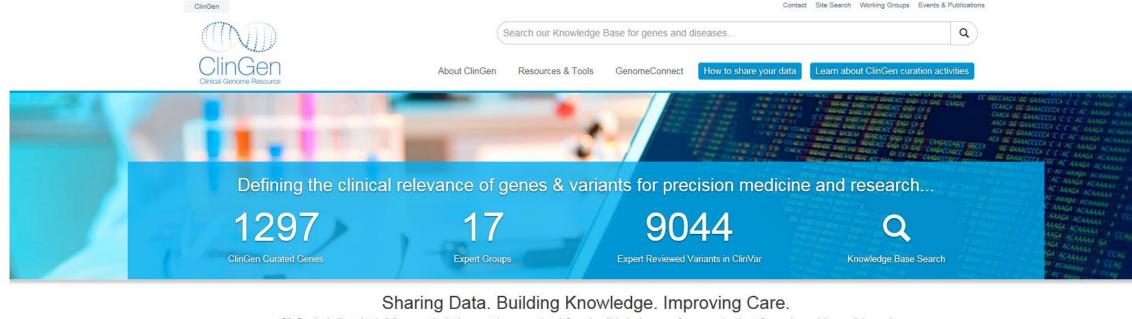


REVIEWS

APPLICATIONS OF NEXT-GENERATION SEQUENCING


Coming of age: ten years of nextgeneration sequencing technologies

Sara Goodwin¹, John D. McPherson² and W. Richard McCombie¹



WGS

UCM, 25/09/2017

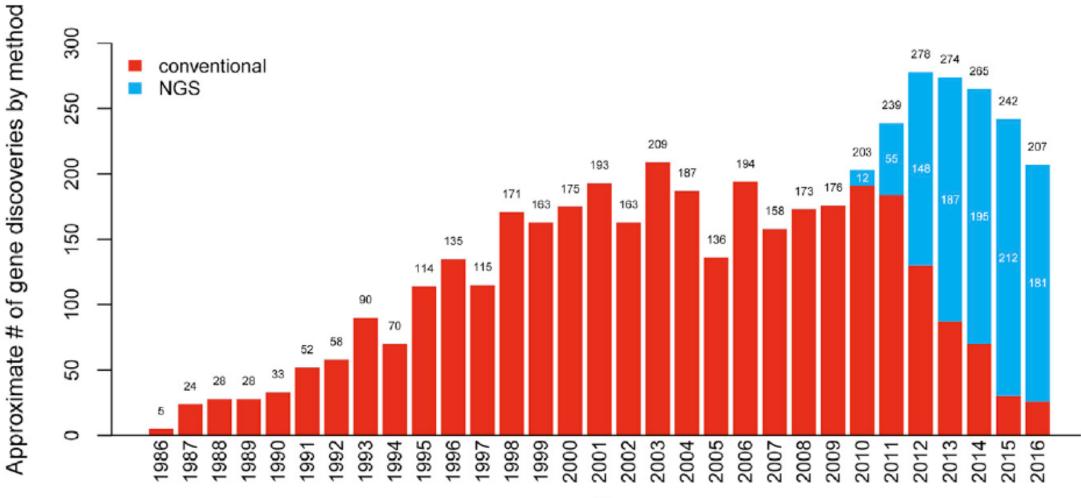
- Algectomes of a en a depends on 2 factors:
- It repretententeility switcht settisch awaicia retais has so to attedewith genome dissease eathed variants departing from a reference sequenter premetor anter of the condition
- Gærloofikripføledgtionf eatleev festuttsim pavestørenpredistrige væboetodige asæistiatfe, rbuttiethere auptrolgalbilistse estsittietes of risk. (variants interpreted as being likely pathogenic but that actually are benign) and overdiagnoses (pathogenic variants that do not lead to disease due to incomplete penetrance).

ClinGen is dedicated to building an authoritative central resource that defines the clinical relevance of genes and variants for use in precision medicine and research. Learn more about our organization and our ongoing efforts below.

Identification of new Cancer Predisposition Genes by NGS

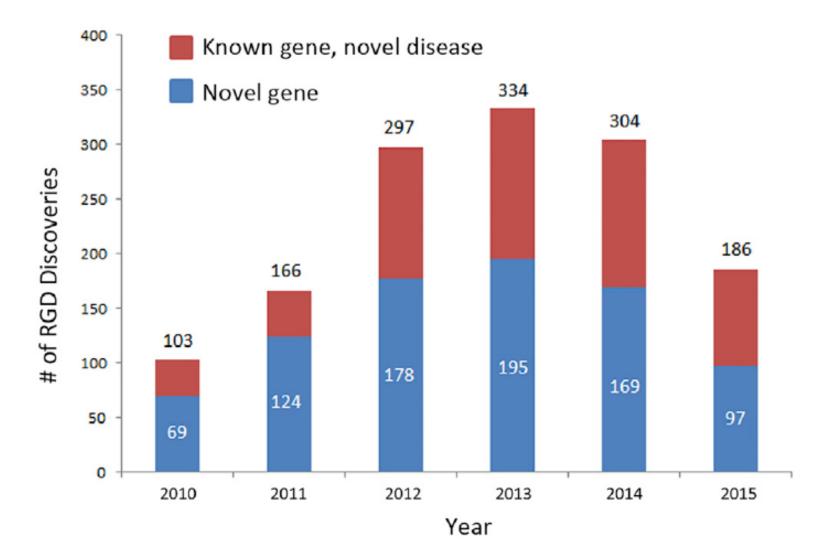
ARTICLE

Received 6 Apr 2015 | Accepted 14 Aug 2015 | Published 25 Sep 2015

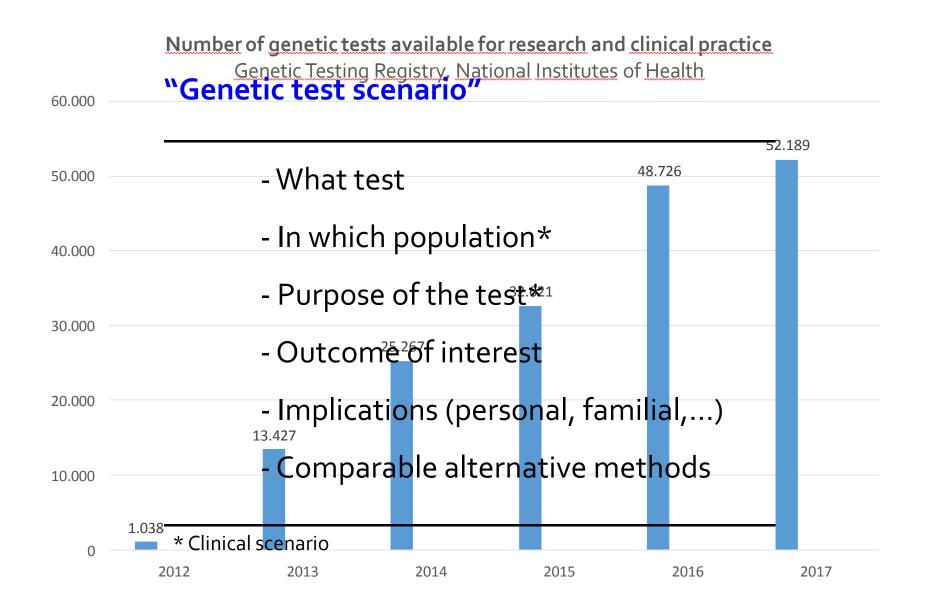

DOI: 10.1038/ncomms9383

OPEN

A mutation in the *POT1* gene is responsible for cardiac angiosarcoma in *TP53*-negative Li-Fraumeni-like families


Oriol Calvete^{1,2,*}, Paula Martinez^{3,*}, Pablo Garcia-Pavia^{4,5}, Carlos Benitez-Buelga¹, Beatriz Paumard-Hernández¹, Victoria Fernandez¹, Fernando Dominguez⁴, Clara Salas⁶, Nuria Romero-Laorden⁷, Jesus Garcia-Donas⁷, Jaime Carrillo⁸, Rosario Perona^{2,8}, Juan Carlos Triviño⁹, Raquel Andrés¹⁰, Juana María Cano¹¹, Bárbara Rivera^{12,†}, Luis Alonso-Pulpon⁴, Fernando Setien¹³, Manel Esteller^{13,14,15}, Sandra Rodriguez-Perales¹⁶, Gaelle Bougeard¹⁷, Tierry Frebourg¹⁷, Miguel Urioste^{2,12}, Maria A. Blasco^{3,**} & Javier Benítez^{1,2,**}

Approximate Number of Gene Discoveries Made by WES and WGS versus Conventional Approaches since 2010 according to OMIM Data



Year

Approximate Number of Novel Gene-Phenotype Discoveries from 2010 to 2015 according to Orphanet Data

Boycott KM et al. Am J Hum Genet, 2017

Two clinical axiomas

- 1.- "Don't order a test unless you know what to do with the result"
- 2.- "When you order 20 tests, each with 95% specificity, you are likely to get at least one false positive result"

Direct-to-Consumer (DTC) Medical Testing

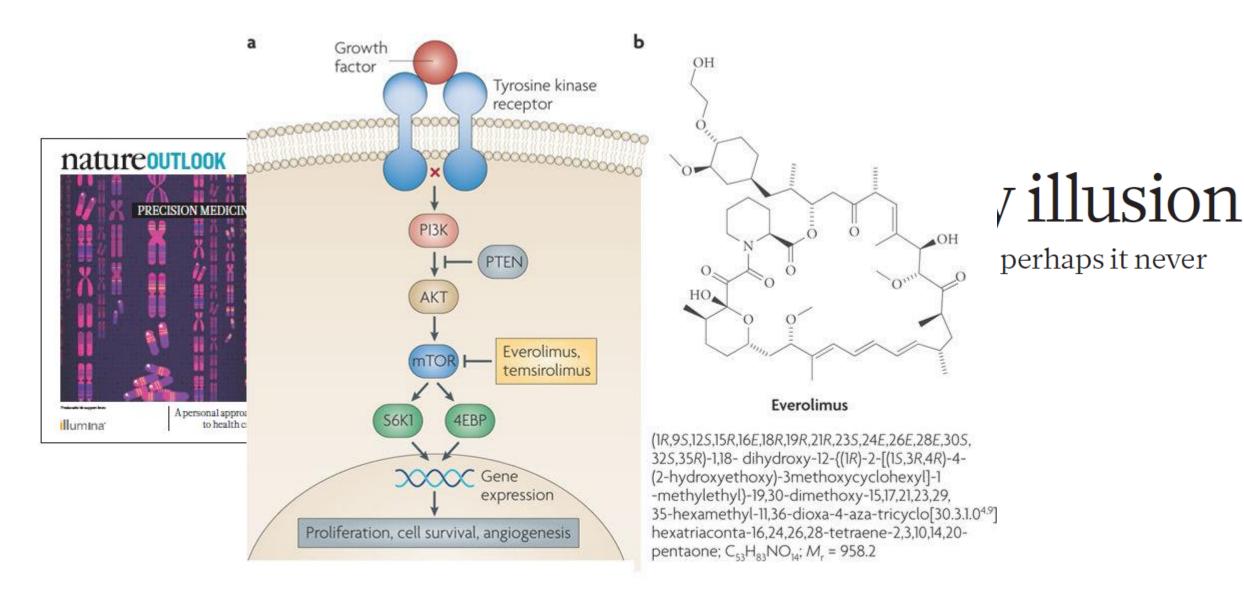
- Growing medical marketplace offers (low-value) medical testing directly to consumers

\$15 million/2010 \$130 million/2015 \$350 million/2020

- Tests are ordered online without a physician order.
- Consumers purchase tests without a prescription/examination and regardless medical history
- Companies offer tests to the public without any reference to evidence-based guidelines
- Advertisements appeal to fears of contracting common disorders
- Tests have a low/negative value for a large segment of the consuming public
- Relative lack of regulation compared with the health care industry
- The FDA recently approved 10 DTC tests despite their low clinical value

DTC. Cascade of additional downstream interventions

- Consumers cannot obtain advice about their results
- Patient anxiety over results, patient selfmisdiagnosis
- They will need to see their physicians for guidance



- Physicians that never order such testing are not familiar with responding to the results
- Risks of downstream interventions based on low-value testing

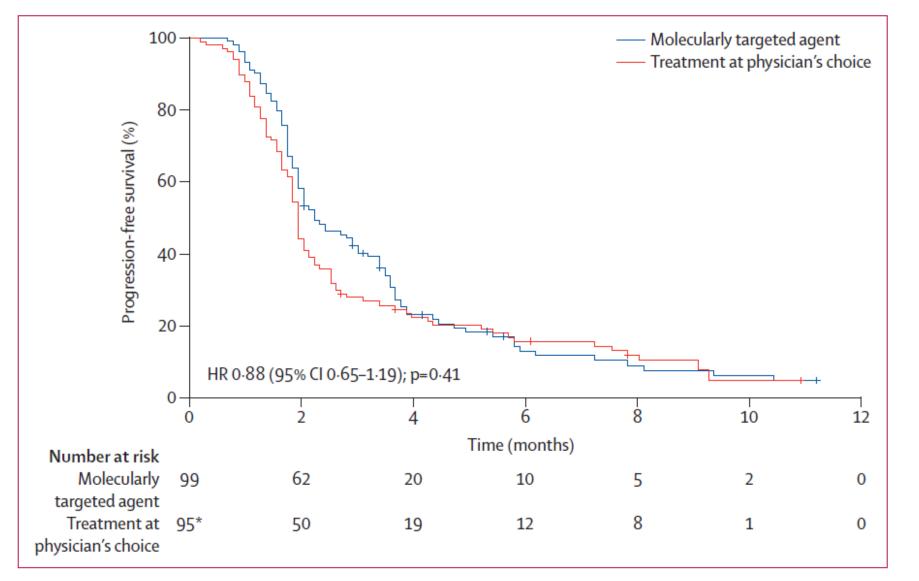
Refer to a specialist, repeat testing, order additional tests, etc

- There are also important health care system implications related to cost.

Precision oncology remains a hypothesis in need of verification

Few patients benefit from precision oncology.

Centre	Population	Method	Results (% patient/drug match)
MD Anderson	2,600 advanced ca.	50-genes panel	6.4
US National Cancer Inst.	795 relapsed tumors	tumor seq	2


But being assigned such a therapy is not proof of benefit.

Treatment based on biological markers

Estimation:

Precision Medicine (Oncology) will benefit around **1.5%** Median progression-free survival 5.7 months of patients with relapsed and refractory solid tumors

The ultimate judge of a therapeutic strategy is the randomized controlled trial.

SHIVA trial

Median progression-free survival was 2.3 months in the experimental group versus 2.0 months in the control group.

Figure 3: Progression-free survival

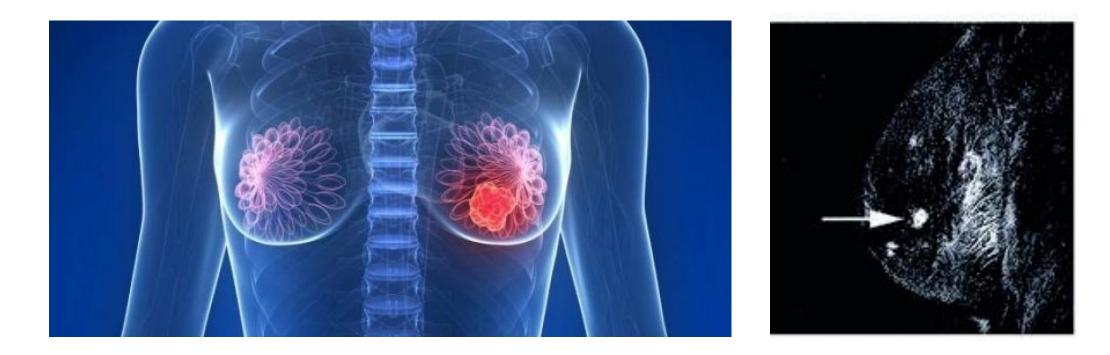
Will Precision Medicine (PM) improve Population Health (PH)?

PM can improve PH

PM might not Improve PH

- 1.- Stratification of populations into risk groups for multiple chronic diseases could provide
- 1.- Diseasefficient and affective prevention and treatment strategies plex
- 2:= Frenctically targeted approach to be alth have demonstrated a Beases afferent to cancer screening, hereditary cancers)
- 3.- High-risk individuals rarely change their behavior to avoid the disease
- 3.- PM technologies and big data are leading to a new era of precision public health that goes beyond personalized treatment of individuals affected by disease.
 - a) Applying emerging methods and technologies for measuring disease, pathogens, exposures, behaviors, and susceptibility in populations
 - b) Developing policies and targeted implementation programs to improve health

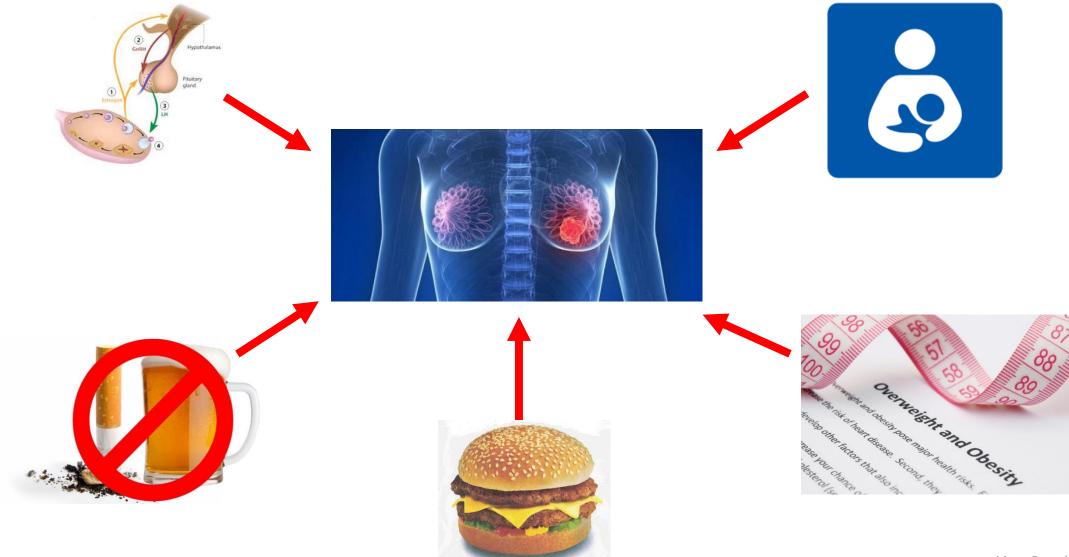
Will Precision Medicine improve Population Health?


Research

JAMA Oncology | Original Investigation

Breast Cancer Risk From Modifiable and Nonmodifiable Risk Factors Among White Women in the United States

Paige Maas, PhD; Myrto Barrdahl, PhD; Amit D. Joshi, PhD; Paul L. Auer, PhD; Mia M. Gaudet, PhD; Roger L. Milne, PhD; Fredrick R. Schumacher, PhD;


Precision Medicine & Public Health

TIPO DE CÁNCER	Nº CASOS	95 % Cl	CR	95 % Cl	ASIRw	95 % Cl	ASIRe	95 % Cl
Mama	27.747 24.0	27-31.957	117,5	101,7-135,3	65,2	56,1-75,5	88,3	76,1-102,1
TIPO DE CÁNCER	0-39	0-49		0-59	0-69	0-3	79	0-84
Mama	0,44	1,86		3,82	5,80	7,8	38	8,99

UCM, 25/09/2017

Geneticists and epidemiologists are aware that cancer strikes neither capriciously nor randomly

GWAS

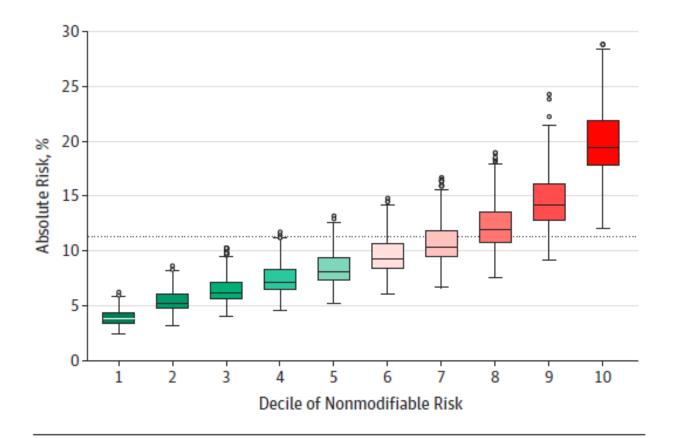
Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2

Marker (chromosome, position)	Alleles ^a	Stage (cases/controls)	MAF ^b	Per-allele OR (95% Cl) ^c	Heterozygote OR (95% CI) ^d	Homozygote OR (95% CI) ^e	P trend
rs4973768 (3p24, 27391017)	C/T	Stage 1 (388/355) Stage 2 (3,951/3,870) Stage 3 (3,872/3,925) Stage 4 (30,256/34,063) Combined	0.46 0.47 0.48 0.46 (0.21)	1.33 (1.07-1.64) 1.06 (0.99-1.03) 1.13 (1.06-1.20) 1.11 (1.08-1.13)	1.45 (1.01–2.07) 0.99 (0.89–1.10) 1.03 (0.93–1.15) 1.12 (1.08–1.17)	1.76 (1.15–2.68) 1.13 (0.99–1.28) 1.27 (1.12–1.44) 1.23 (1.17–1.29)	$\begin{array}{c} 0.0087\\ 0.081\\ 0.00025\\ 1.4\times10^{-18}\\ 4.1\times10^{-23} \end{array}$
rs6504950 (17q23, 50411470)	G/A	Stage 1 (390/357) Stage 2 (3,976/3,894) Stage 3 (3,870/3,923) Stage 4 (30,470/33,302) Combined	0.31 0.29 0.28 0.27 (0.08)	0.76 (0.61–0.96) 0.90 (0.84–0.96) 0.91 (0.85–0.98) 0.95 (0.92–0.97)	0.83 (0.61–1.13) 0.86 (0.78–0.94) 0.89 (0.81–0.97) 0.96 (0.92–0.99)	0.52 (0.31–0.89) 0.86 (0.73–1.02) 0.88 (0.73–1.04) 0.89 (0.83–0.95)	$\begin{array}{c} 0.018 \\ 0.0020 \\ 0.012 \\ 0.00010 \\ 1.4 \times 10^{-8} \end{array}$

Table Brooking Carbine fractalis Estimated and Theoretically - 17,171 cases and 19,862 conited gdds Ratios for deciles of PRS-24 From The Breast and Prostate Correction Consortium Family histor **Theoretical Model** - To develop a empired and to # predicting absolute risk of breast cancer. PGRS Decile 2 1.21 PGRS Decile Age of menarche 1.42- The model includes medificately and nonmodificable risk components PGRS Decile Senopaus al status 1.59PGRS Decile 6 1.761.65PMSBHHEable factors 1.92PGRS Decile 8 2.072.04PGRS Decile_9 2.322.26 PGRS Decile 10 mass index 2.88Family Histor Menopaugal hormone therapy Alcohol consumption Smoking status

Table 1. Total Number of At-Risk Subjects and Incident Cases Expected at Different Risk Levels for Every 100 000 Women With Assessed Risk

	Model										
	PRS-92 Only		Questionnaire-Based	Risk Factors Only	PRS-92 and Risk Factors						
Risk Level	Total Subjects, No.	Cases, No.	Total Subjects, No.	Cases, No.	Total Subjects, No.	Cases, No.					
Moderate risk: RR = 2-3 ^a	2691	688	306	74	4116	1076					
High risk: RR>3ª	109	40	0	0	649	181					
10-y risk at 40 is > average 10-y risk at 50 ^b	9113	295	6531	194	16 134	564					
10-y risk at 50 is < average 10-y risk at 40 ^c	27 018	380	11231	184	32 037	425					


Abbreviations: PRS, polygenic risk score; PRS-92, all 92 known breast cancer SNPs; RR, relative risk; SNP, single nucleotide polymorphisms.

^b The average 10-y risk at age 50 years is 2.6%.

^c The average 10-y risk at age 40 years is 1.8%.

^a The reference is 11.3%, the average risk in women ages 30 to 80 years.

Figure 3. Distribution of Absolute Lifetime Risk Associated With Modifiable Risk Factors Stratified by Deciles of Nonmodifiable Risk for White Women in the United States

Table 2. Estimates of Proportion of Breast Cancer Cases Preventable by Reduction of Modifiable Risk in Different Strata of the Population Defined by Nonmodifiable Risk Factors^a

	Proportion of Breast Cancer, %											
	Alcohol		MHT	MHT		ВМІ ^ь		Smoking		All 4 Modifiable Risk Factors Simultaneously ^c		
Nonmodifiable Risk Groups	Р	Т	Р	Т	Р	Т	Р	Т	Р	Т		
Decile												
1	4.00	0.36	4.60	0.31	4.80	0.57	4.10	0.12	4.40	1.28		
2	5.50	0.49	5.80	0.38	6.30	0.76	5.70	0.17	5.90	1.70		
3	6.60	0.59	7.00	0.47	7.20	0.87	6.80	0.21	7.00	2.01		
4	7.70	0.69	8.30	0.55	8.10	0.98	7.90	0.24	8.00	2.31		
5	8.60	0.77	8.80	0.58	9.10	1.09	8.70	0.27	8.80	2.55		
6	9.90	0.89	9.50	0.63	10.10	1.22	9.60	0.30	9.80	2.84		
7	11.10	1.00	11.10	0.74	10.90	1.32	10.80	0.33	11.00	3.18		
8	12.40	1.11	12.00	0.80	12.10	1.46	12.50	0.38	12.20	3.53		
9	14.70	1.32	14.30	0.95	13.80	1.66	15.20	0.47	14.30	4.14		
10	19.7	1.78	18.50	1.23	17.50	2.11	18.80	0.58	18.50	5.35		
PAR ^d	-	9.01	-	6.64	-	12.05	-	3.08	-	28.90		

Abbreviations: BMI, body mass index; MHT, menopausal hormone therapy; P, total number of preventable breast cancers; PAR, population-attributable risk; T, total number of breast cancers. ^c The modifiable risk factors are body mass index, MHT use, alcohol use, and

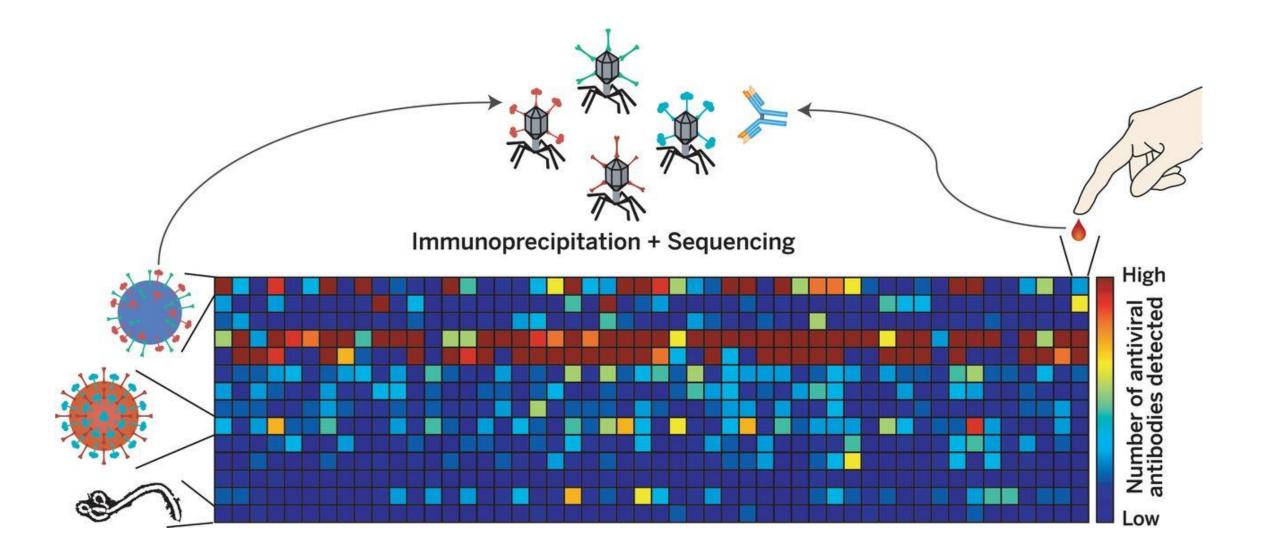
smoking.

× 100.

^d Estimate of population-attributable risk due to modifiable factors (individually

and simultaneously). PAR is given by column sum of T and %P = (%T/PAR)

^a The proportions for each stratum are shown relative to the total number of breast cancers (%T) and total number of preventable breast cancers (%P) that are expected to arise in the whole population.


^b BMI is calculated as weight in kilograms divided by height in meters squared.

Conclusions

These results illustrate the potential value of risk stratification to improve breast cancer prevention, particularly to aid decisions on risk factor modification at the individual level.

The effect of such models for improving the cost-benefit ratio of population-based prevention programs will depend on the implementation cost of risk assessment.

Precision Medicine & Public Health

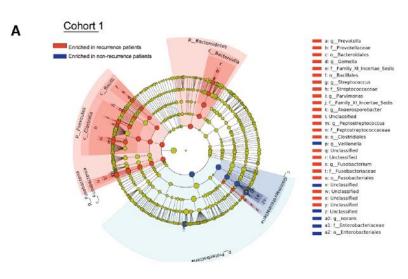
Colorectal cancer (CRC)

- The his of most a non-montance to elucitate CT resistence in CRC patients

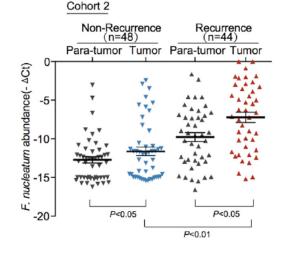
Second leading cause of cancer-related death - Cancer chemoresistence results from a complex interplay between gene care chemore and (6): on file on our acil, Capecitabine, Oxaliplatin

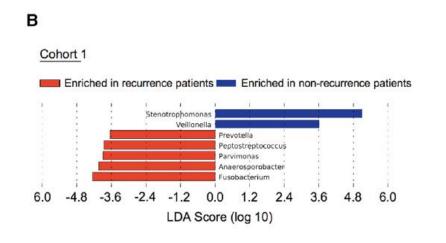
The majority of patients are initially responsive - Microbiota is linked to CRC initiation and progression via affecting Pratestitsalvintifilammoartiencurrence due to drug resistance have por prognosis

Microbiota

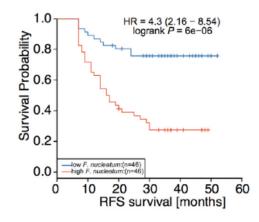

- Complex communities of microorganisms live on and in the human body, and variations in the composition and function of these communities are increasingly linked to various conditions and diseases, mainly related with immunoregulation (allergies, autoimmunity, inflammatory bowel disease)

- Although it is not known if microbiome changes are causative or consequential in most pathophysiologies, they might provide biomarkers for disease detection or management

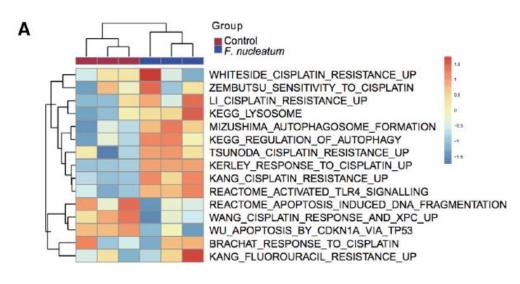

- Microbiome analysis is likely to become a routine component of secondary health care and is emerging as a modifiable environmental risk factor in multifactorial diseases that could be targeted by novel therapeutics


- Technology advancements are leading to a range of powerful methods for microbiome analysis becoming available and affordable for clinical studies

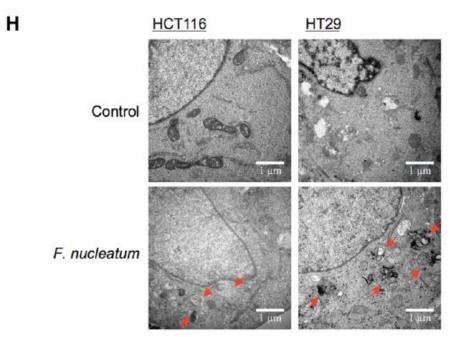
Fusobacterium nucleatum (Fn) is associated with CRC recurrence and patient outcome

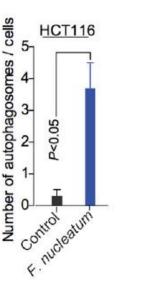


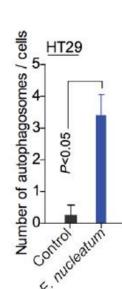
С



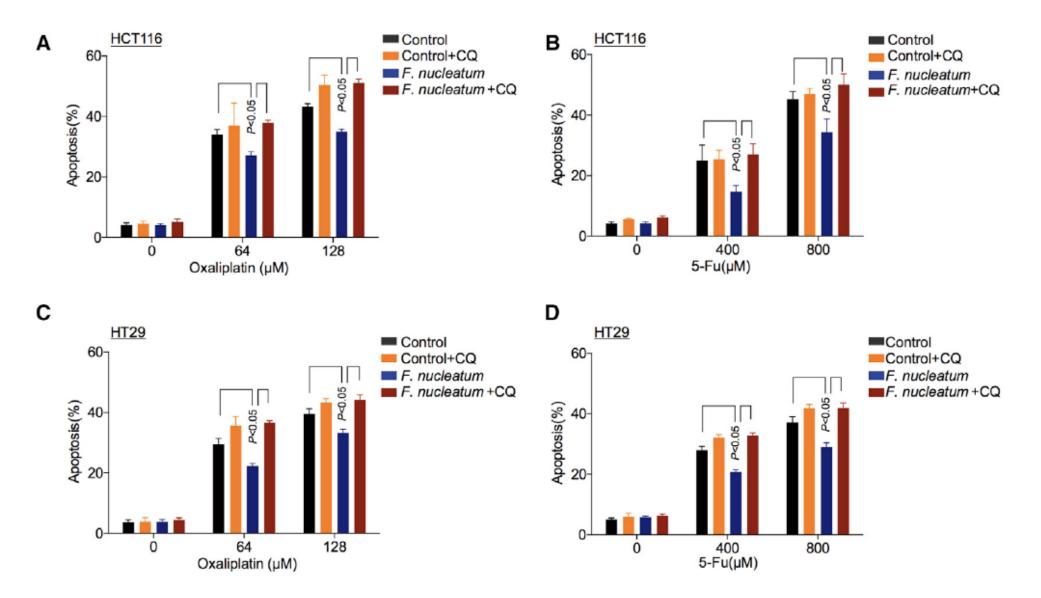
D Cohort 2

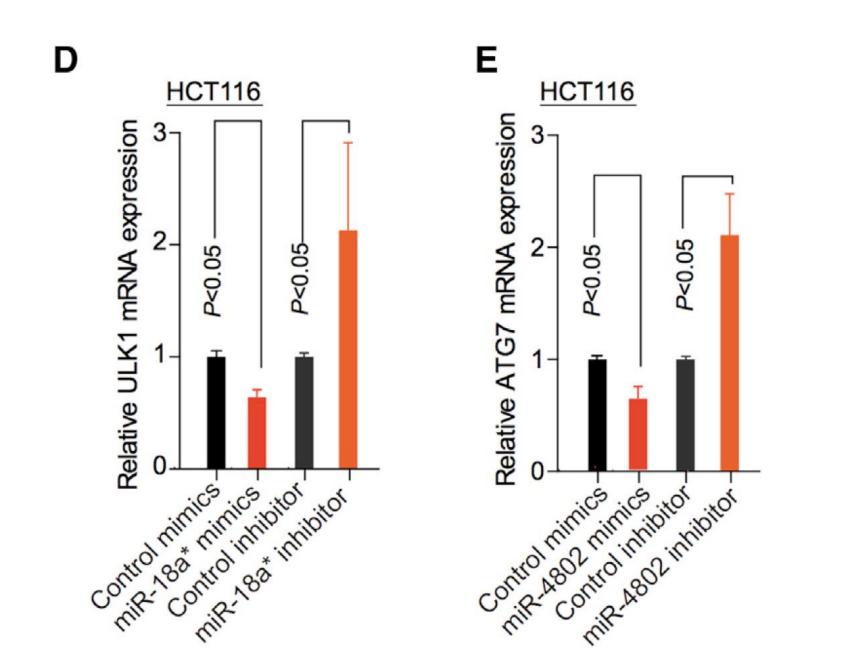



Fn promotes cancer autophagy activation

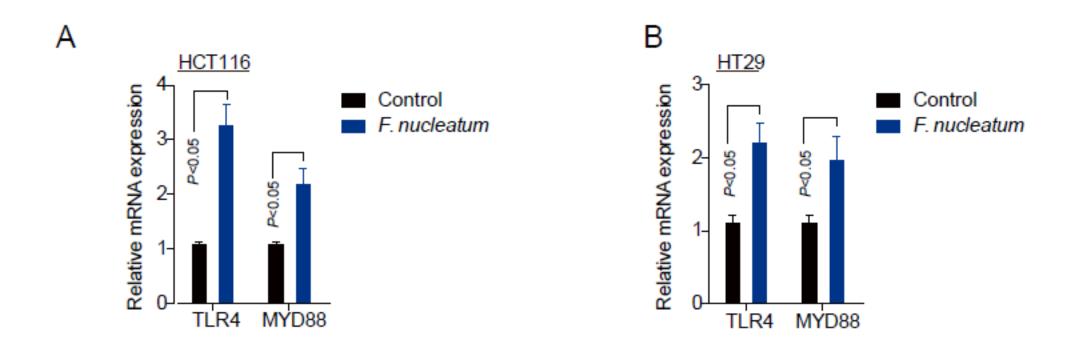


Co-culture with Fn:

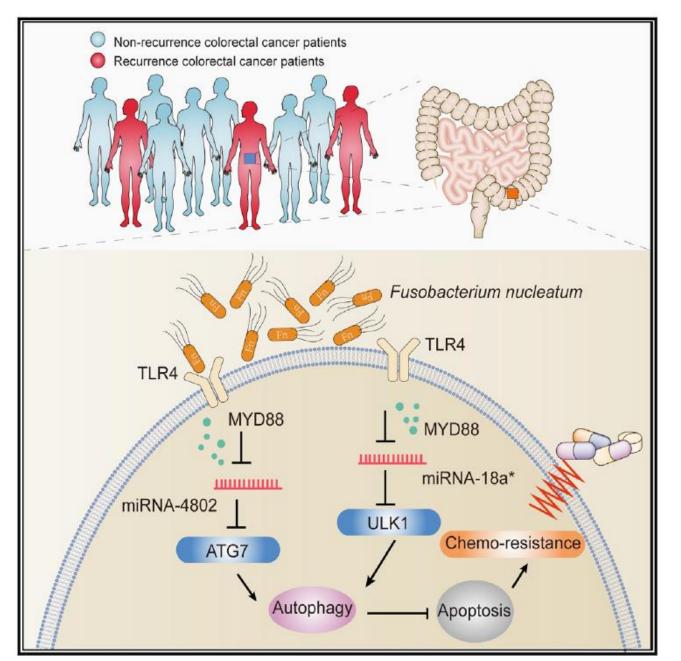

- 992 downregultaed gene
- 1,466 upregulated genes (ULK1, ATG7)



Fn induces cancer chemoresistance via autophagy pathway



Fn activates cancer autophagy via selective loss of miR-18a* and miR-48o2



Yu T et al. Cell , July 2017

TLR4 and MYD88 Pathway Is Involved in Fn-Mediated Chemoresistance

Fn promotes Chemoresistence to CRC by Modulating Autophagy

Conclusions

- Genetics and Genomics are irrevocably changing the face of biomedical research and, more slowly, clinical medicine.
- Turning back now from the use of genomic technologies in health care is inconceivable.
- A wide approach to individual variability in environment, lifestyle and genes, will improve our capacity to diagnose, prevent and predict diseases.
- PM should be supervised only by a qualified physician and conducted only by scientifically qualified persons.
- Some major challenges:
 - . education
 - . to define "genetic test scenarios" and clinical guidelines
 - . to regulate DTC medical testing
 - . to develop precision approaches to interventions in individuals and populations