

Medicina Personalizada en Oncología Perspectivas Futuras

Luis Paz-Ares Hospital Universitario Doce de Octubre, Madrid, Spain

Drivers of Cancer treatment Evolution

- Multidisciplinary teams
- Uncovering of molecular aberrations
 - Novel targets
 - Predictive biomarkers
- Technology acquisition
 - Tumor profiling
 - Effective targeting

Tumor Profiling Evolution The Example of NGS

Genomic Aberrations in Common Solid Tumors

©2013 by American Society of Clinical Oncology

MEETING

SCIENCE & SOCIETY

Major classes of molecular-targeted agents

Monoclonal antibodies

Antisense oligonucleotides

Intracellular action c 0.5–2kDa Orally available Extracellular action c 150kDa i.v. infusion

Intracellular action c 10kDa i.v. infusion

Temas

- Agentes dirigidos a Dianas moleculares específicas
- Inmunoterapia
- Desarrollo de nuevos fármacos y EECC
- Implementación

Temas

- Agentes dirigidos a Dianas moleculares específicas
- Inmunoterapia
- Desarrollo de nuevos fármacos y EECC
- Implementación

Dianas Moleculares

- Combinaciones
- Prevención y tratamiento de Resistencias
- Co-mutaciones

Strategic combinations

Afatinib plus cetuximab at MTD: responses by T790M mutation

Abrogation of feedback loop of Raf by Erk

Zhao Y, Adjei AA. Nat Res Clin Oncol 2014;11:385-400

Strategic combinations

METMAB: PFS and OS in patients with Met-positive disease

MED12 controls the response to multiple cancer drugs through regulation of TGF-β receptor signalling

Huang S, et al. Cell 2012;151:937-50

SCC – FGFR1 amplification

Bryan A. Chan^{1,2}, Brett G.M. Hughes^{1,2,3} Transl Lang Cancer Res 2015;4(1):36-54

Efecto de FGFR1/4 en la tumorigénesis *in vitro*

	Cell line	Driver	Action	Proliferation (10%FBS)	Proliferation (0,5%FBS)	Clonability	Soft Agar
SCC	H520	TN	FGFR1 or FGFR4 silencing		₽	₽	₽
	H226	ΤN	FCED4 overeveression				
	Calu-1	KRAS	rGrk4 overexpression				

	Cell line	Driver	Action	Proliferation (10%FBS)	Proliferation (0,5%FBS)	Clonability	Soft Agar
ADC	H2009	KRAS	FGFR1 or FGFR4 overexpression	-			
	H3122	ALK					
	H1437	TN		=		=	=
	A549	KRAS	FGFR1 or FGFR4 silencing				

Correlación entre los efectos observados y activación de AKT, MAPK y STAT3

XXX predice la sensibilidad a inhibidores de FGFR en PDXs

XXX predice la sensibilidad a inhibidores de FGFR en PDXs

Control
AZD4547

Temas

- Agentes dirigidos a Dianas moleculares específicas
- Inmunoterapia
- Desarrollo de nuevos fármacos y EECC
- Implementación

Inmunoterapia

- Biomarcadores
- Nuevas estrategias
- Combinaciones

How Can Predictive Markers Guide Clinical Practice?

NPV, negative predictive value; PPV, positive predictive value. Richard Simon. *J Natl Cancer Inst.* 2015;107(8):1-3.

Most patients are not benefitting from PD-1/L1 Agents

Hirsch et al. Lancet 2016

Tumour and Immune Biomarkers Under Investigation to Better Predict Potential Responses to Immuno-Oncology Therapy

Nivolumab in Renal Cell Carcinoma CheckMate 025: Overall Survival in ITT and PD-L1 Subgroups

 Median OS in the ITT population was 25.0 months and 19.6 months in the nivolumab and everolimus arms, respectively

*PD-L1 expression was assessed using Dako 28-8 pharmDx.

CI, confidence interval; HR, hazard ratio; ITT, intent to treat; NE, not estimable; OS, overall survival; PD-L1, programmed death ligand 1; RCC, renal cell carcinoma. Motzer RJ et al. N Engl J Med. 2015;373(19):1803-1813.

Rationale for Tumour Mutation Burden (TMB) As a Biomarker for I-O

The hypothesis that high TMB increases the immunogenicity of tumours makes them a rational target for treatment with I-O therapies^{1,2}

- DNA, deoxyribonucleic acid; MHC, major histocompatibility complex; NK, natural killer; TCR, T-cell receptor. 1. Schumacher TN, Schreiber RD. Science. 2015;348(6230):69-74. 2. Kim JM, Chen DS. Ann Oncol. 2016;27(8):1492-1504. 3. Liontos M et al. Ann Transl Med. 2016;4(14):264.
- 4. Sharma P, Allison JP. Science. 2015;348(6230):56-61. 5. Giannakis M et al. Cell Rep. 2016;15:857-865.

TMB Can Be Assessed Using Next-Generation Sequencing

 TMB can be assessed by comparing somatic mutations to germline DNA using next-generation sequencing (NGS)¹

Whole-genome/Whole-exome sequencing

•Allows for full complement of genomic analyses or coding regions

- •All coding regions making up ~1% of the genome¹
 - 85% of mutations contributing to disease are found in the coding region²
- •Typically used in concert with RNA sequencing

Targeted gene panel

- •Predefined set of genes^{3,4}
- •Validated tests are commercially available⁵⁻⁷

TMB, tumour mutation burden.

^{1.} Ng SB et al. Nature. 2009;461(7261):272-276. 2. Choi M et al. Proc Natl Acad Sci USA. 2009;106(45):19096-19101. 3. Roszik J et al. BMC Med. 2016;14(1):168. 4. Warner JL et al. Genome Med. 2016;8(1):113. 5. Frampton GM et al. Nat Biotechnol. 2013;31(11):1023-1031. 6. Veloso ZA et al. Presentation at AACR 2016. Abstract 854. 7. Kowanetz M et al. Oral presentation at WCLC 2016.

CheckMate 026 (nivolumab) Progression-Free Survival in the TMB Subgroup

 Individual patient TMB levels were assessed from tissue biopsy samples using WES on the Illumina HiSeq 2500; blood samples were used for germline control

*TMB threshold was split into tertiles defined as total number of missense mutations: high ≥243, medium 100 to 242, and low 0 to <100. ¹DNA was sequenced on the Illumina HiSeq 2500 using 2 × 100-bp pairedend reads; an average of 45 and 50 million reads were sequenced per tumour and germline sample, respectively (average 84.6 × and 93 × the mean target coverage, respectively). CI, confidence interval; HR, hazard ratio; NR, not reached; PFS, progression-free survival; TMB, tumour mutation burden; WES, whole-exome sequencing. Carbone DP et al. N Engl J Med 2017;376:2415-2426.

Atezolizumab in 1L and 2L+ NSCLC Assessment of TMB and Clinical Benefit in PD-L1–Selected Patients

	Methods/Design							
•	 FIR and BIRCH: phase 2, single-arm, open-label studies of atezolizum 	nab at 1200 mg q3w in PD-L1–selected patients ^{1,2}						
•	FoundationOne [®] sequencing panel for TMB (300+ genes) in archival tumour samples ³	TMB cutoffs defined at 9.9 mutations/MB (median) or 16.2 mutations/MB (75% quantile) ³						

*Unadjusted and unstratified HRs for above vs below TMB cutoffs.

mut, mutation; MB, megabase; NSCLC, non-small cell lung cancer; PD-L1, programmed death ligand 1; PFS, progression-free survival; q3w, every 3 weeks; TMB, tumour mutation burden. 1. Clinicaltrials.gov. NCT01846416. Accessed February 22, 2017. 2. Clinicaltrials.gov. NCT02031458. Accessed February 22, 2017. 3. Kowanetz M et al. Oral presentation at WCLC 2016.

PFS in Patients from FIR and BIRCH

Liquid Biopsies May Eventually Be Used for Assessing TMB

• ctDNA is being investigated as a surrogate to measure TMB in the absence of tissue biopsy

TMB has been measured in ctDNA using WES and a consolidated gene panel; ctDNA, circulating tumour DNA; Mb, megabase; No, number; TMB, tumour mutation burden; WES, whole-exome sequencing. Cai W et al. Oral presentation at WCLC 2016.

Nivolumab MSI-H/dMMR Clinical Data in mCRC Patients

- CheckMate 142 was a multicentre, open-label, single-arm study conducted in patients with locally determined MSI-H or dMMR metastatic CRC who had disease progression during, after, or were intolerant to, prior treatment with fluoropyrimidine-, oxaliplatin-, or irinotecan-based chemotherapy¹
- MSI status was assessed using IHC and/or PCR²
- US indication was based on the following efficacy data¹:

	All Patients (n=74)	Prior Treatment With Fluoropyrimidine, Oxaliplatin, and Irinotecan (n=53)
IRC-Confirmed Objective Response Rate, n (%)	24 (32%)	15 (28%)
95% CI	22–44	17–42
Complete response (%)	2 (2.7%)	1 (1.9%)
Partial response (%)	22 (30%)	14 (26%)
Duration of Response		
Median in months (range)	NR (1.4+–26.5+)	NR (2.8+–22.1+)

CI, confidence interval; CRC, colorectal cancer; dMMR, mismatch repair deficient; IHC, immunohistochemistry; IRC, independent review committee; mCRC, metastatic colorectal cancer; MSI-H, microsatellite instability high; NR, not reached; PCR, polymerase chain reaction. 1. OPDIVO [package insert]. Princeton, NJ: Bristol-Myers Squibb Company; 2017. 2. Overman MJ et al. *Lancet Oncol* 2017; [Epub ahead of print].

Pembrolizumab Pan-Tumour dMMR/MSI-H Clinical Data

Efficacy Results for Patients with dMMR/MSI-H Cancer

Tumour Type	Objective response rate % (95% CI)						
All Patients (n=149)		39.6% (31.7–47.9)					
Colorectal cancer (n=90)		36% (26–46)					
Non-colorectal cancer (n=59)		46% (33–59)					
Tumour Type	Objective response rate % (95% Cl)	Tumour Type	Objective response rate % (95% CI)				
Endometrial cancer (n=14)	36% (13–65)	Bladder cancer (n=1)	NE				
Biliary cancer (n=11)	27% (6–61)	Esophageal cancer (n=1)	PR				
Gastric or GE junction cancer (n=9)	56% (21–86)	Sarcoma (n=1)	PD				
Pancreatic cancer (n=6)	83% (36–100)	Thyroid cancer (n=1)	NE				
Small intestinal cancer (n=6)	38% (9–76)	Retroperitoneal adenocarcinoma (n=1)	PR				
Breast cancer (n=2)	PR, PR	Small cell lung cancer (n=1)	CR				
Prostate cancer (n=2)	PR, SD	Renal cell cancer (n=1)	PD				

• All patients received at least 1 prior therapy before clinical trial enrollment

• Data pooled from KEYNOTE-016, KEYNOTE-164, KEYNOTE-028, KEYNOTE-012, and KEYNOTE-158, with various dosing rates and schedules

CI, confidence interval; CR, complete response; dMMR, mismatch repair deficient; DOR, duration of response; GE, gastroesophageal; MSI-H, microsatellite instability high; NE, not evaluable; NR, not reached; PD, progressive disease; PR, partial response; SD, stable disease. KEYTRUDA [package insert]. Whitehouse Station, NJ: Merck & Co; 2017.

Anti–PD-1 Agents Inflammation Gene Signatures in SCCHN

- A 6-gene IFN-γ panel was performed using NanoString nCounter[®] on 50 SCCHN patients treated with nivolumab or pembrolizumab¹
 - NanoString nCounter[®] may show better gene expression quantification vs PCR in total RNA extracted from clinical, archival, FFPE samples²
- CD8 expression correlated with the IFN-γ gene expression profile, signifying the T cells' mediated inflammation in "hot" tumours
- Probability of survival was higher in patients categorised IFN-γ signature high

Association of IFN-y Gene Expression Profile With OS

FFPE, formalin-fixed paraffin-embedded; IFN, interferon; OS, overall survival; PCR, polymerase chain reaction; PD-1, programmed death receptor-1; PD-L1, programmed death ligand 1; SCCHN, squamous cell carcinoma of the head and neck.

1. Seiwert TY et al. Poster presentation at ASCO 2017. 6049. 2. Reis PP et al. BMC Biotechnology 2011;11:(46):1-10.

Study 1108 (durvalumab) Inflammation Gene Signatures in Bladder Cancer

IFN-γ MEDI-4 signature-high bladder cancer patients treated with durvalumab had improved outcomes

HR, hazard ratio; IFN, interferon; sig, signature. Bais C et al. Poster presentation at ASCO 2017. 3037.

Mutation or Neoantigen Burden

CD274, programmed cell death ligand 1 gene; *KRAS,* Kirsten rat sarcoma viral oncogene homolog; KC, cluster including *CDKN2A/B* inactivation coupled with low expression of the NKX2-1 (TTF1) transcription factor; KL, cluster including *STK11/LKB1*; KP, cluster including STK11; *p53,* tumour protein 53 gene; RFS, relapse free survival; *STK11,* serine/threonine kinase11; TCGA, the cancer genome atlas. Skoulidis F et al. *Cancer Discov.* 2015;5(8):860-877.

I-O in KRAS-Mutant NSCLC

 162 KRAS-mutated NSCLC patients who received at least 1 round of anti–PD-1/PD-L1 therapy and who had molecular profiling data available

mOS, median overall survival; mPFS, median progression-free survival; NSCLC, non-small cell lung cancer; ORR, objective response rate; PD-1, programmed death receptor-1; PD-L1, programmed death ligand 1. Skoulidis F et al. Poster presentation at ASCO 2017. 9016.

35

Tumour Microenvironment Types Based on TILs and PD-L1

APC, antigen-presenting cell; CTL, cytotoxic T cell; IFN-γ, interferon gamma; M2, M2 macrophage; MDSC, myeloid derived suppressor cell; MHC, major histocompatibility complex; PD-1, programmed death protein 1; PD-L1, programmed death ligand 1; TCR, T cell receptor; T_H1, T helper 1; TIL, tumour infiltrating lymphocyte; Treg, regulatory T cell. Teng MWL et al. *Cancer Res.* 2015;75(11):2139-2145.

Tumour Microenvironment

Tumour Microenvironment: Automated Assessment of TILs CD8+

Fluorescence Whole-Slide Imaging

 Fluorescence whole-slide imaging is a quantitative approach that allows for side-by-side viewing of different IHC markers on the same sample^{1,2}

MIRAX viewer³ 1. Hamilton PW et al. *Methods*. 2014;70(1):59-73. 2. Stack EC et al. *Methods*. 2014;70(1):46-58. 3. Varga VS et al. *Cytometry A*. 2009;75(12):1020-1030.

Multiplexed System Development: Fluorescent IHC

- Immunofluorescence technology is used to visualise multiple markers in a single section, while completely conserving the tissue context being viewed¹
- IF has been successfully demonstrated in FFPE tissue in differing multiplex levels¹
- Considerations³:
 - Antibody blocking
 - Cross-reactivity
 - Masking

Simultaneous F-IHC staining of DAPI, cytokeratin, CD3, GZB, and Ki67 in lung cancer samples²

FFPE, formalin-fixed paraffin-embedded; IF, immunofluorescence; IHC, immunohistochemistry.

1. Stack EC et al. Methods. 2014;70(1):46-58. 2. Schalper KA et al. Presented at WCLC 2016. 3. Galetta H et al. J Immunother Cancer. 2015;3(suppl 2):P411.

Personalized cancer immunotherapy paradigm

The Importance of Personalised Medicine

Temas

- Agentes dirigidos a Dianas moleculares específicas
- Inmunoterapia
- Desarrollo de nuevos fármacos y EECC
- Implementación

Three ingredients for effective drug discovery - how to maximize?

Marc Tessier-Lavigne, Yale Lecture 2011

Trade-off among commonly used experimental systems for functional validation

Resource and time investment

Umbrella & basket studies

Biankin AV et al. Nature 2015; 526:361

The SHIVA Study

Le Tourneau C. et al. Lancet Oncol 2015;16:1324

The SHIVA Study

In the safety population, 43 (43%) of 100 patients treated with a molecularly targeted agent and 32 (35%) of 91 patients treated with cytotoxic chemotherapy had grade 3-4 adverse events (p=0.30).

Le Tourneau C. et al. Lancet Oncol 2015;16:1324

Some ongoing phase III studies of anti-PDL1/PD1 therapy in combination with chemotherapy and immune doublets

Study name	Study description	Chem O	Anti- CTLA4
Atezolizumab			
IMpower130	Atezolizumab + platinum doublet chemotherapy (non-squamous)	ü	
IMpower131	Atezolizumab + platinum doublet chemotherapy (squamous)	ü	
IMpower132	Atezolizumab + platinum doublet chemotherapy (non-squamous)	ü	
IMpower150	Atezolizumab + platinum doublet chemotherapy \pm bevacizumab (non-squamous)	ü	
Pembrolizumab			
KEYNOTE-407	Pembrolizumab + platinum doublet chemotherapy (squamous)	ü	
KEYNOTE-189	Pembrolizumab + platinum doublet chemotherapy (non-squamous)	ü	
Nivolumab			
CheckMate 227	Nivolumab monotherapy or + ipilimumab or + platinum doublet chemotherapy (squamous and non-squamous)	ü	ü
Durvalumab			
MYSTIC	Durvalumab monotherapy or + tremelimumab (squamous and non-squamous)		ü
NEPTUNE	Durvalumab + tremelimumab (squamous and non-squamous)		ü

Factors Contributing to Complexity in Large Clinical Outcomes Trials

Rosenblatt M. NEJM 2017; 376:52-60

AURA3 primary endpoint: PFS by investigator assessment

 Analysis of PFS by BICR was consistent with the investigator-based analysis: HR 0.28 (95% CI 0.20, 0.38), p<0.001; median PFS 11.0 vs 4.2 months.

Population: intent-to-treat

Progression-free survival defined as time from randomisation until date of objective disease progression or death. Progression included deaths in the absence of RECIST progression. Tick marks indicate censored data; CI, confidence interval

Phase I/II studies of osimertinib...AURA and AURA2

		data cut off date	Meeting/J ournal	Year	Author	Ν	ORR for T790M	mPFS for T790M	Waterfall plot
AURA Ph 1	Various 20-240mg	9.27.201 3	WCLC	2013	Ranson	34	50%	N/A	
AURA Ph 1	Various 20-240mg	4.27.201 4	ASCO	2014	Janne	107	64%		
AURA Ph 1	Various 20-240mg	8.1.2014	NEJM	2015	Janne	253 (138 T790M)	61%	9.6m	
AURA Ph 1	Various 20-240mg	12.2.201 4	ELCC	2015	Janne	283	59%	13.5m	
AURA extension	80mg	5.1.2015	WCLC	2015	Yang	201	61%	Not reached	
AURA 2	80mg	11.1.201 5	Lancet Oncol	2016	Goss	210 <mark>1ertinib f</mark>	or T790	M+ pati	
ORR60-70	<mark>%, mPFS</mark>	<mark>5 10-11 r</mark> 5		2016	Yang	397	66%	11.0m	

Drug Development in the Genomic Era

- Keep pace with genome discovery
- Use genomics tools in pre-clinical studies
- Consortia based molecular screening
- Smaller studies in pre-selected population
- Genotype based basket studies (agnostic of site of origin)
- Regulatory involvement- NGS as a "companion diagnostic"
- Use of genomic tools to refine patient selection using extreme responders
- Registry mechanisms- drug genome database

A precision medicine research strategy

Vargas AJ, Harris CC Nat. Rev. Cancer 2016; 16:525

A Precision Oncology Study

"The difficulty lies not so much in developing new ideas as in escaping from the old ones".

John Maynard Keynes

Temas

- Agentes dirigidos a Dianas moleculares específicas
- Inmunoterapia
- Desarrollo de nuevos fármacos y EECC
- Implementación

Multiplex Assays of Oncogenic Drivers in Lung Cancer

The cancer immunogram

Some Challenges

- ØClinical implementation of precision oncology
 ØDealing with tumor heterogeneity and resistance
- **ØPrioritizing targets**
- **ØLow frequency aberrations innovative trials**
- ØPredictive biomarkers for immune-based therapies
- ØDrug combinations: emerging and limiting toxicities

Clinical Implementation

- Expert teams
- Tumor matherial
- Technology
- Bioinformatics
- Adequate time-frame
- Quality assurance programs
- Link to a innovative clinical trials program

Ensuring equity of access to innovation: France organisation of molecular platforms for personalised medicine

Provides nation-wide molecular diagnostic tests

- The programme is operated by the INCa/Ministry of Health since 2006
- > Objectives
- Perform molecular testing for all patients;
- Whatever the healthcare institution status (public hospitals, private hospitals...);
- Perform high quality tests;
- leukemia, solid tumours

- 28 regional platforms
- Partnerships between several laboratories located in University hospitals and cancer centres
- Regional organization
- Cooperation between pathologists and biologists

INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER

Tableau 11. Activité 2013 dans le cancer du poumon							
Marqueur	Nombre de patients	% d'altérations moléculaires	% de non interprétables				
Mutations EGFR	23 336	10,0 %	8,0 %				
Translocation ALK	18 861	3,5 %	13,4 %				
Mutations KRAS	22 958	27,0 %	7,9 %				
Mutations BRAF	20 100	2,0 %	8,9 %				
Mutations HER2	17 843	0,7 %	10,1 %				
Mutations PI3KCA	17 375	2,4 %	10,4 %				

Molecular testing in Europe: C Mascaux/ S Lantuejoul

IASLC

40years

Progressive shift from targeted NGS to WES and RNA seq

Fig. 40. Projected trends in extensive tumour genome sequencing by the end of the Cancer Control Plan

Patients with an actionable target and No actionable target

16TH WORLD CONFERENCE ON LUNG CANCER SEPTEMBER 6-9, 2015 DENVER, COLORADO, USA

INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER

Molecular testing in Europe: C Mascaux/S Lantuejoul

16TH WORLD CONFERENCE ON LUNG CANCER

SEPTEMBER 6-9, 2015 + DENVER, COLORADO, USA

INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER

Molecular testing in Europe: C Mascaux/S Lantuejoul

Séape-IAP Sociedad Española de Anatomía Patológica División española de la International Academy of Pathology

PBG Plataforma de Biomarcadores en Cáncer

lpazaresr@seom.org